Title:
TIMING OF MUSCLE ACTIVATION IS ALTERED DURING SINGLE-LEG LANDING TASKS FOLLOWING ACL RECONSTRUCTION AT THE TIME OF RETURN TO SPORT

Authors:
Jacopo Emanuele Rocchi1,2, Luciana Labanca1, Luca Laudani3, Carlo Minganti1, Pier Paolo Mariani1,2, Andrea Macaluso1,2

1 Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
2 Villa Stuart Sport Clinic-FIFA Medical Centre of Excellence, Rome, Italy
3 Cardiff Metropolitan University, Cardiff, United Kingdom

Corresponding Author:
Jacopo Emanuele Rocchi, MSc
Department of Movement, Human and Health Sciences
University of Rome Foro Italico
Piazza Lauro De Bosis 6
00135, Roma, Italy
Phone: +39 06 36 733 242
Fax: +39 06 36 733 214
e-mail: j.rocchi@studenti.uniroma4.it

Abstract word count: 250
Total word count: 3232
Funding

None declared
ABSTRACT

Objectives: It is well known that alterations in landing mechanics persist for years following anterior cruciate ligament reconstruction (ACL-R). Nevertheless, existing literature is controversial in reporting successful or unsuccessful recovery of pre-landing muscle activation timing after ACL-R. The study aimed at comparing myoelectric and kinematic patterns during landing tasks between ACL-R and healthy subjects.

Design: Cross-sectional study

Setting: Institutional research laboratory.

Patients and intervention: Fifteen male athletes following ACL-R using patellar tendon and 11 using hamstrings autograft at the time of return to sport were recruited. Fifteen healthy athletes served as control group. Participants performed 4 different single-leg landing tasks arriving onto a force plate.

Main outcome measures: Electromyographic (EMG) activity of knee extensors and flexors, normalized vertical ground reaction force and knee angular displacement were recorded.

Results: In all the tasks pre-impact EMG duration was longer in ACL-R (112±28 ms in the knee extensors; 200±34 ms in the knee flexors) compared to healthy participants (74±19 ms in the knee extensors; 153±29 ms in the knee flexors; P<0.05). Initial Contact and Maximum Post-Impact knee angle were lower in ACL-R (9±7 degrees at Initial Contact; 39±12 degrees at maximum flexion) compared to healthy participants (17±9 degrees at Initial Contact; 52±15 degrees at maximum flexion; P<0.05). Normalized vertical GRF was higher in ACL-R compared to healthy participants (3.4±0.5 and 2.7±0.6; P<0.05).

Conclusion: At the time of return to sport ACL-R subjects showed altered motor control strategies of single-leg landings. These alterations may lead to uncoordinated movement, hence increasing the risk of re-injury.
Key words: neuromuscular control, return to play, knee injury, EMG duration, motor programming, knee flexion, GRF
INTRODUCTION

Non-contact anterior cruciate ligament (ACL) injury is one of the most common knee injuries in cutting and pivoting sports such as soccer, basketball, and volleyball1–4. The ACL tears occur soon after the initial ground contact5,6 and too quickly for reflexive muscular activation (>100 milliseconds) to prevent injuries 7. Zebis et al. (2009)8 showed that abnormal co-activation of thigh muscles performing side-cutting tasks predisposes for future ACL injury, therefore modulating muscle activity prior to landing seems to be crucial to avoid excessive joint rotations and to protect ACL from dangerous loading9,10. When ACL surgery is required, the reconstruction can be performed by using either autograft or allograft tissue. It has been shown that autograft is superior to irradiated allograft with regards to knee functional outcomes and laxity11. The standard surgical autogenous harvest sites are patellar and hamstrings tendons and it has been recently pointed out that the short and long-term outcomes of these grafts are similar in providing stability and function12–15. Considering the electromyographic (EMG) activity prior to landing in ACL reconstructed (ACL-R) subjects, results are controversial in reporting successful or abnormal neuromuscular strategies performing jump-landing tasks16,17. A recent review of Theisen et al.(2016)10 describes in details pre-landing muscle activity in ACL injured and reconstructed subjects reviewing the literature from 1980 to 2015. The review underlined the weakness of current evidences on this topic recognizing clinical and methodological heterogeneity, such as the type of graft, time from surgery and level of physical activity as main weak points of existing studies. The aim of this study is to compare timing and magnitude of activation of knee extensor and flexor muscles between non-professional competitive athletes who underwent ACL reconstruction with Bone-Patellar Tendon (B-PT-B) graft and Semitendinosus and Gracilis
(ST GR) tendon autograft, with respect to healthy individuals, performing single-leg landing tasks, six months after surgery (return to sport).
MATERIALS AND METHODS

Participants

This investigation was conducted as a cross-sectional study. An eligibility investigation was conducted on 108 ACL-R subjects operated by the same surgeon undergoing the 5th post-surgical time-scheduled medical examination between August and December 2015 (Figure 1).

INSERT FIGURE 1 HERE

Twenty-six ACL-R male subjects, 15 using patellar tendon (age, 21 ± 3 years (mean ± SD); stature, 1.78 ± 0.07 m; body mass, 75 ± 10 kg) and 11 using semitendinosus and gracilis autograft (age, 21 ± 5 years; stature, 1.74 ± 0.08 m; body mass, 72 ± 12 kg) were admitted in the study at 6.0 ± 1.2 months from surgery. Inclusion criteria were 1) previous history of practicing pivoting and cutting sport for at least 5 years, 2) same standardized postoperative rehabilitation protocol (table 1), 3) participation in competitive sport activities (Tegner level scale of 7-9 at the time of ACL injury) and 4) post-surgical between limb difference in anterior knee laxity < 3 mm measured by an arthrometer (Genourob, Laval, France).

INSERT TABLE 1 HERE

All ACL-R subjects were released to unrestricted sport activities by a physiatrist who attested side-to-side isometric strength of knee extensors and flexors as well as side-to-side peak vertical ground reaction force in the loading phase of a maximal vertical countermovement jump with an impairment of the surgical leg performance within 15% of
the non-surgical leg. Subjects with concurrent meniscal damage treated with partial meniscectomy were included. Exclusion criteria were 1) knee pain measured by Visual Analog Scale (VAS) ≥ 4; 2) injuries of lower limb muscles during the rehabilitation process and 3) previous knee surgery. 15 healthy male subjects (age, 23 ± 2 years; stature, 1.75 ± 0.07 m; mass, 72 ± 12 kg), with no history of previous injury of muscles or joints in lower limbs and with an International Knee Documentation Committee (IKDC) score of 100, were matched with ACL-R participants according to their Tegner activity level and to their experience in pivoting/cutting sports, and served as control group. The study was approved by the Ethics Committee of the University of Rome “La Sapienza”. Informed consent was obtained from the participants and all the procedures were conducted in accordance with the Declaration of Helsinki.

Experimental setup

All the subjects performed four different single-leg landing tasks from a 20 cm height platform and at ground level arriving onto a force plate (KISTLER, model 9281 B; Winterthur, Switzerland). The examined limb was the operated knee for ACL-R group, and the dominant leg for control group. The dominant leg was defined as the leg the subject would use to kick a ball as far as possible. Wireless bipolar surface EMG electrodes were applied on the Vastus Medialis (VM), Rectus Femoris (RF), Vastus Lateralis (VL), Biceps Femoris (BF) and Semitendinosus (ST) muscles of the examined limb. Electrode position was identified between the motor point and the distal tendon, in a direction parallel to the muscle fibers in accordance with SENIAM guidelines\(^\text{18}\). The electrodes were applied after careful skin cleaning with ethyl alcohol. The signal was preamplified (×1,000), amplified (×1 for BF, ST and ×2 for VL, RF, VM), band-pass filtered (5 Hz–1 kHz) and high-pass filtered with a zero-lag second-order Butterworth filter with 10 Hz cutoff frequency by means of a wireless, portable EMG system (FreeEMG, BTS Bioengineering, Milan, Italy).
Angular displacement of the knee joint on the sagittal plane was recorded by an electrogoniometer (EGN) (Biometrics Ltd., Gwent, UK) placed on the lateral side of the knee with the two arms aligning with the thigh and leg axes. EGN data were low-pass filtered with a zero-lag second-order Butterworth filter with 10 Hz cutoff frequency. Previous research has shown high validity and reliability of EGN to record joint range of motion during dynamic activities19. EMG, force and angular data were time synchronized and collected at 1000 Hz.

Experimental Procedures

Before data collection, each subject was given 10 minutes to warm-up and practice each of the four single-leg landing tasks until comfortable. The warm-up and practice regimen was standardized to mitigate the possible variability deriving from such tasks. The takeoff platform was placed 30 cm away from the rear edge of the force plate.

The subjects were asked to stand on the takeoff platform with the reference leg, to jump forward, and land with the same leg onto the force plate. Four different landing tasks were performed. In the first, the participants were asked to land holding a bent knee position for 3 seconds (Stop Landing (STL)). In the second the participants were instructed to land as naturally as possible smoothly absorbing the impact and ending the movement in full extension (Smooth Landing (SML)), in the third the participants were asked to land and immediately perform a rebound, stopping the second landing as in the first task (rebound landing (RBL)). The fourth task was the single-leg hop for distance (SLHD), in which the subjects were asked to hold the single-leg standing position on the ground with the hands placed on their iliac crests and to jump forward a distance equal to the limb length, arriving onto the force plate.
Each subject performed three trials for each task keeping the hands on their hips and wearing their own sport shoes, resulting in a total of 12 trials. The task order was randomized to reduce learning effects.

Data Management

The mean values of the 3 trials for each task were averaged, and the average was used for subsequent analysis.

The interval of interest was the initial landing phase of each jump, in particular the 200 ms around the initial contact (IC). IC was identified when the vertical ground-reaction force first exceeded 10 N.

Muscle activity onset was agreed on after visual inspection by two blinded assessor.

The following parameters were analyzed, 1) RMS EMG: magnitude of muscle activity 100 ms pre and 100 ms post IC; 2) Pre Impact EMG duration: time interval from muscle activity onset to IC; 3) vGRF/BW: peak vertical Ground-Reaction Force (vGRF) normalized by Body Weight (BW); 4) IC Knee Angle: knee flexion angle at IC instant; 5) Max Post-impact Knee Angle: peak knee flexion angle reached after IC (Fig. 2)

Normalization of EMG signal
EMG signals from knee extensors and flexors muscles were normalized by signals recorded during a maximal voluntary isometric contraction (MVIC) and expressed as a percentage. The measurement was performed with the knee at 90° of flexion in both tasks. EMG signal during MVIC was smoothed by a symmetrical moving Root Mean Square (RMS) filter (30 ms time constant) and the peak was selected to normalize the RMS EMG data registered during the landing tasks in the given time intervals.

Statistical analysis

The statistical package IBM SPSS version 21 (IBM, Chicago, IL) was used for the analysis. All data are expressed as means ± SD. The Shapiro-Wilk test was applied before the analysis, to test the normal distribution of data. Considering vGRF/BW, IC Knee Angle and Max Post-impact Knee Angle parameters, three separate analyses of variance (ANOVAs) with repeated measures were applied, setting the 4 tasks (i.e. Stop Landing, Smooth Landing, Rebound Landing and Hop for Distance) as within factor, and the groups (i.e. B-PT-B group, ST GR group and Control group) as between factors.

For Pre Impact EMG duration and RMS EMG in the five muscles, two separate multivariate analysis of variance (MANOVA) with repeated-measures were applied, considering the tasks as within factor, and the groups as between factors and further univariate analysis were considered only if significant multivariate effects were detected. When a significant interaction between task and group was observed, follow-up tests were conducted by splitting the sample into three groups and running separate repeated-measures ANOVAs to explore the different effect of task on the three groups.
Post-hoc pairwise comparisons were performed by means of Fisher's LSD test and the Bonferroni alpha level correction was applied. The significance level for all comparisons was set at $P < 0.05$.
RESULTS

EMG data

RMS EMG data analysis showed no main effects of task, group and task by group interaction.

Pre-impact EMG duration multivariate analysis showed a main effect of task ($F=14.138; P<0.001$), group ($F=6.858; P<0.001$) and task by group interaction ($F=2.126; P=0.001$). Univariate analysis showed the same main effects for all the five muscles. Post-Hoc pairwise comparison data are shown in figure 2. Significant differences were found between ST GR and B-PT-B groups compared to Control Group for all the five muscles in all the four tasks. Specifically, the pre-impact EMG duration was found to be significantly longer in both ACL-R groups, as compared to the healthy controls. No differences were found between ST GR and B-PT-P groups. In the Hop For Distance task pre impact EMG duration was significantly longer compared to the other three tasks for all the five muscles as shown in Figure 3.

IC Knee Angle

IC Knee Angle analysis showed a main effect of group only ($F=10.925; P<0.001$), while no main effect for task and task by group interaction was found. Post-Hoc analysis for group showed a significant difference for control group compared to ST GR group ($P=0.006$) and to B-PT-B group ($P<0.001$). Pairwise comparison data (Table 2) showed significant differences for ST GR and B-PT-B compared to control group for 3 out of 4 tasks except
for SLHD task. In particular ACL-R subjects demonstrated significantly lower IC angles. No differences were found between ST GR and B-PT-P groups.

Max Post-impact Knee Angle

Max post-impact Knee Angle analysis showed a main effect of group only (F=6.702; P=0.004), while no main effect for task and task by group interaction was found. Post-Hoc analysis for group showed a significant difference for control group compared to ST GR group (P=0.009) and to B-PT-B group (P=0.017). Pairwise comparison data (Table 2) showed significantly lower peak knee flexion angles for ST GR and B-PT-B groups compared to Control group for STL and SML Tasks. No differences were found for RBL and SLHD task. No differences were found between ST GR and B-PT-P groups.

vGRF/BW

vGRF analysis showed main effects of Task (F= 6.411; p =0.004), group (F= 9.105; P=0.001) while no task by group interaction effect was found. Significant difference for smooth landing task compared to the other three tasks (Stop landing: P<0.001; Rebound landing: P=0.044; Hop for Distance: P= 0.023) was found. Post Hoc analysis for group showed a significant difference for Control group compared to ST GR group (P=0.015) and to B-PT-B group (P=0.001). Pairwise comparison data (Table 2) showed significantly higher peak vGRF/BW for ST GR and B-PT-B groups compared to Control group in STL and SML Tasks.

vGRF/BW was significantly higher in RBL for B-PT-P compared to Control group. No differences between ST GR and Control group as well as no difference between B-PT-B
and ST GR was found in RBL task. No between groups differences were found in SLHD task.
DISCUSSION

The main finding of this study is that ACL-R subjects showed altered neuromuscular strategies for the control of single leg landing tasks compared to healthy controls at the time of return to sport, regardless of the type of autograft (B-PT-B or ST GR) used for the reconstruction, thus clarifying an issue which was previously controversial. In particular, they showed longer pre impact EMG duration for all the considered muscles (VM, VL, RF, BF, ST) in all the four tasks compared to control group. This result is in line with Gokeler et al. (2010)\(^{17}\), who demonstrated an earlier muscle activity onset in the involved limb of ACL-R subjects both males and females compared to uninvolved limb and healthy controls performing single leg hop-for-distance task six months after surgery. Interestingly, in our study no differences were found in pre-impact EMG duration between the two ACL-R groups, suggesting that graft choice does not appear to influence the impairments in neuromuscular control of landings at the time of return to sport.

Labanca et al. (2015)\(^{20}\) highlighted earlier muscle activity onset for knee extensors and flexors in ACL-R subjects compared to healthy controls after a predictable perturbation to the knee. This result is consistent with our findings, even though the time elapsed from surgery (2 vs 6 months) and the type of task were considerably different.

Our findings are in contrast with Bryant et al. (2009)\(^{16}\), who showed no differences between ACL reconstructed male subjects (either using B-PT-B or ST GR autograft) and healthy controls in pre-impact EMG duration performing single leg hop for distance task 1 year after reconstruction. Since it is well established that anticipatory postural adjustments (APAs) can improve with training\(^{21–23}\) and that timing of pre landing EMG activity can be modulated to the task constraints\(^{24}\), it is likely that the findings of Bryant et al. (2009)\(^{16}\) are biased by the fact that the authors did not take into account patients’ previous experience in jumping, pivoting and cutting maneuvers\(^{10}\) as well as the type of rehabilitation
underwent by ACL-R subjects25,26. In addition, it has been shown that overall knee function returns to values similar to the contralateral limb from 8 to 12 months following ACL reconstruction27, therefore differences between our findings and those of Bryant et al. (2009)16 may be ascribed to the different time elapsed from surgery (6 months vs 1 year).

We found lower IC Knee Angle in 3 out of 4 tasks except for SLHD task in ACL-R subjects compared to healthy controls. It is well known that a knee angle close to full extension (0-25° of knee flexion) at toe contact in pivoting, cutting and landing movements is a risk factor for ACL injury in non-contact situations5,6,28-31, therefore, this result is consistent with demonstrating a higher risk of re-injury in ACL-R subjects when returning to full sport participation. We did not find any significant differences in SLHD task, which could be due to the fact that SLHD was performed at ground level and not from a 20 cm height platform as in the other 3 landing tasks. It is possible to speculate that landing from a certain height maximally challenge single-leg landing ability of ACL-R limb.

Max post-impact knee angle was significantly lower between ACL-R subjects and healthy controls in STL and SML tasks. It has been previously shown that maximum knee flexion angle reached after the impact is an indicator of the efficiency of landing control capacity9,32,33. Reduced knee flexion at landing in ACL-R subjects may be attested to a compensatory strategy related to persistent quadriceps weakness34, in addition, limited active flexion performing landing tasks also results in lower GRF dissipation and in a “stiff” landing pattern, which may increase ACL loading25. Therefore, we can assume that single-leg landing control strategies in ACL-R subjects are not efficient enough at the time of return to sport, 6 months after surgery. We did not find any significant difference in RBL and SLHD tasks even if there is a strong tendency for healthy subjects to have greater peak knee flexion angles.

In STL and SML tasks we found significantly higher vGRF/BW of ACL-R subjects compared to healthy controls. It is well established that high peak vGRF/BW in landing
underlines scarce impact absorption capacity33,36,37, and that high vGRF combined with decreased maximum knee flexion reached after IC can increase Knee Abduction Moment (KAM)9,38,39, which is known to be one of the principal risk factors for ACL injury. In our study ACL-R groups showed both less peak knee flexion and higher peak vGRF/BW, therefore, we can state that ACL-R subjects in this condition have an increased risk of re-injury at the time of return to sport.

In RBL, vGRF/BW was significantly higher in B-PT-B compared to healthy controls. This could be ascribed to a surgery-related quadriceps weakness, which is present in B-PT-B subjects14,40,41 when asked not only to land but also to perform a push-off from the ground, thus challenging power output, which results in a stiffer knee and in a greater vGRF/BW.

No between groups differences were found for SLHD tasks probably due to the different execution of this task as previously mentioned.

The main limitation of this study is that kinematic and kinetic inter limb differences were not analyzed. Furthermore, since it is well established that neuromuscular alterations do affect the contralateral side after ACL reconstruction42, including such analysis in the study would have helped in obtaining a deeper understanding of landing motor control adaptations following ACL reconstruction. In addition, individuals of control group were not matched for limb dominance although 19 out of 26 (73.1\%) ACL-R subjects underwent injury of their dominant leg. This may have biased performance towards control group. However, since the magnitude of kinematic and kinetic asymmetry between dominant and non-dominant leg during the execution of single-leg functional tasks such as side-cutting43 and single-leg landing44 has previously shown to be small, we believe that the overall magnitude of bias would be negligible.

In conclusion, ACL-R subjects who returned to unrestricted sport activities 6 months after surgery showed longer pre-impact EMG duration, lower IC and Max post-impact knee angle as well as greater vGRF/BW when performing single leg landings, which is likely to
increase the potential risk of re-injury. The analysis of pre-impact EMG duration performing landing tasks at the time of return to sport may be a useful tool in the decision-making process for full sport participation through the identification of subjects showing neuromuscular alterations in motor programming.

Future studies should look at which of the outcome measures that were identified as differing between ACL-R and healthy subjects are related to re-injury risk when return to sport. In addition, further investigations are needed to understand whether these neuromuscular alterations persist bilaterally over time or can be reversed by specific interventions early in the rehabilitation process.
REFERENCES

10 Theisen D, Rada I, Brau A, et al. Muscle activity onset prior to landing in patients...

Tsao H, Hodges PW. Immediate changes in feedforward postural adjustments following voluntary motor training. Exp Brain Res. 2007;181:537–546.

FIGURE LEGEND

Figure1

Flowchart showing patients recruitment.

Figure2

An example of raw rectified EMG activity of VM, vertical GRF and sagittal Angular displacement in a STL task. The dotted line represent the EMG activity onset and the full line represent the initial ground contact.
Figure 3

Pre-Impact EMG duration in all the 4 tasks. the black column represents B-PT-P group, the grey line represents ST GR group and the white column represents CONTROL group. *=P<0.05; **=P<0.01; ***=P<0.001.
<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Surgery ACL Rehabilitation (2(^{nd}) day to 6(^{th}) month)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1(^{st}) and 2(^{nd}) week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^{st}) and 2(^{nd}) week</td>
</tr>
<tr>
<td>Weight bearing with brace</td>
</tr>
<tr>
<td>Passive mobilization</td>
</tr>
<tr>
<td>Quadriceps NMES</td>
</tr>
<tr>
<td>Straight leg raises</td>
</tr>
<tr>
<td>Hamstrings stretching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2(^{nd}) to 4(^{th}) week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(^{nd}) to 4(^{th}) week</td>
</tr>
<tr>
<td>Weight bearing with brace</td>
</tr>
<tr>
<td>Active mobilization</td>
</tr>
<tr>
<td>Squatting exercises</td>
</tr>
<tr>
<td>Passive quadriceps NMES</td>
</tr>
<tr>
<td>Straight leg raises</td>
</tr>
<tr>
<td>Hamstrings stretching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4(^{th}) to 8(^{th}) week</th>
</tr>
</thead>
<tbody>
<tr>
<td>4(^{th}) to 8(^{th}) week</td>
</tr>
<tr>
<td>Full ROM recovery</td>
</tr>
<tr>
<td>Weight bearing without brace</td>
</tr>
<tr>
<td>Active mobilization</td>
</tr>
<tr>
<td>Squatting exercises</td>
</tr>
<tr>
<td>Quadriceps NMES</td>
</tr>
<tr>
<td>CKC resistance training</td>
</tr>
<tr>
<td>Quadriceps stretching</td>
</tr>
<tr>
<td>Hamstrings stretching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8(^{th}) to 12(^{th}) week</th>
</tr>
</thead>
<tbody>
<tr>
<td>8(^{th}) to 12(^{th}) week</td>
</tr>
<tr>
<td>Running pattern recovery</td>
</tr>
<tr>
<td>Heavy CKC resistance training</td>
</tr>
<tr>
<td>OKC resistance training</td>
</tr>
<tr>
<td>Squatting exercises</td>
</tr>
<tr>
<td>Quadriceps stretching</td>
</tr>
<tr>
<td>Hamstrings stretching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12(^{th}) week to 6(^{th}) month</th>
</tr>
</thead>
<tbody>
<tr>
<td>12(^{th}) week to 6(^{th}) month</td>
</tr>
<tr>
<td>Autonomous gym training 3 x week</td>
</tr>
<tr>
<td>TABLE 2 vGRF/BW, IC knee angle and Max post-impact knee angle data for the 3 groups in the 4 tasks. a = significantly different from B-PT-B and ST-GR, P=<0.05; b = significantly different from B-PT-B and ST-GR, P=<0.01; c = significantly different from B-PT-B and ST-GR, P=<0.001; d = significantly different from CONTROL, P=<0.05</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>vGRF/BW</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IC Knee Angle (°)</td>
</tr>
<tr>
<td>Max post-impact knee angle (°)</td>
</tr>
</tbody>
</table>
108 subjects recruited for eligibility at the 5° post surgical medical examination

Bone - patellar tendon - bone graft (n=65)
Semitendinosus and gracilis graft (n=43)

Meeting return to sport criteria (n=65)

Missing return to sport criteria (n=43)

Other ligaments involved (n=16)
No cutting/pivoting sport experience (n=12)
Knee pain VAS ≥ 4 (n=5)
Previous knee surgery (n=6)

26 subjects recruited
Bone - patellar tendon - bone graft (n=15)
Semitendinosus and gracilis graft (n=11)