DEFINITIONS OF PERFORMANCE INDICATORS IN
REAL-TIME AND LAPSED-TIME ANALYSIS IN
PERFORMANCE ANALYSIS OF SPORTS

By
HYONGJUN CHOI

Supervised by
Prof. Mike Hughes, Dr. Peter O’Donoghue and Dr. Nic James

A DISSERTATION
Submitted in partial fulfilment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
(Performance Analysis of Sport)

UNIVERSITY OF WALES INSTITUTE, CARDIFF
Athrofa Prifysgol Cymru, Caerdydd
Submitted on 16th May 2008

Copyright © Hyongjun Choi 2008
Abstract

Performance analysis is an objective method of gathering the data of performance, and generally transforms these observations into numerical data. Performance indicators, as well as a selection or elements of successful outcome, have often been used in order to feedback augmented information in performance analysis systems, but they have rarely been considered within the classifications of performance analysis systems based on timing of analysis and feedback. The main aim of this study is to investigate performance indicators used within real-time and lapsed-time systems so that the definitions of the performance indicators, the effectiveness of the performance indicators, their reliability and validity within real-time analysis systems can be analysed.

In this research, there were four main studies:-

Design and test real-time and lapsed-time notation systems for basketball; evaluate different quantitative methods of assessing reliability of such real-time systems, evaluate different quantitative methods of assessing the relative importance of the different performance indicators in performances and relating these to game 'state' rather than the end result, and evaluate the effectiveness of real-time and lapsed-time notation systems for basketball both quantitatively and qualitatively. Particularly, a
basketball system and data were used to investigate the condition of using real-time data, reliability issues and its effects within the real-time feedback process as an exemplar sport, but similar analyses of tennis data demonstrated the generic applications of this approach.

Consequently, this study found that the performance indicators within the real-time analysis systems should be considered with rationality and objectivity. For the real-time data gathered by the basketball analysis system, a particular reliability test, kappa, conformed to the construct validity within the prescribed range of agreements in inter-operator reliability tests. The valid range of performance indicators were found to be different for segments of performance, (quarters in basketball, sets in tennis) compared to those defined by whole match outcomes – this was again demonstrated in both tennis and basketball. An attempt to define an optimal set of performance indicators found through statistical tests (using neural networks, multiple linear regression and principle components analysis) has been presented and further analysed qualitatively, using interview techniques with an elite basketball coach. Multiple linear regression models based on performance indicators with the highest criterion validity had the highest prediction accuracy (92.25 %). There is little benefit to using more than 10 performance indicators within the current exercise as a stable prediction level was
found when using 6 to 9 variables. Thus, the reduced set of action variables, commonly performance indicators, would be used in real-time analysis systems where the indicators were found in statistical methods. The interviews of coach have pointed out the validity of the performance indicators, qualitatively, such as locations of shots, movement patterns of opponents, 2 point shots %, 3 point shots %, free throw %, total rebounds, scores and personal fouls. In addition, some of the selected performance indicators by the coach were descriptive indicators - such as how well the defenders block the key scores.

Finally an attempt to measure the effectiveness of these performance indicators was made quantitatively and qualitatively. Different types of feedback were given to a basketball team at half-time using the performance indicators identified in the previous study. Statistical comparisons were made between the first halves and second halves and grouped by the types of feedback. A qualitative assessment of their worth was also made by interviewing the coach after each match throughout the season. The statistical tests did not confirm the effectiveness of use performance indicators in real-time analysis systems, the 2 points attempts was the only significantly difference on the ‘one-way feedback’ model between before and after the feedback using the performance analysis, and this was a deterioration of performance. On the other hand, the scripts of
interviews contained the details of effectiveness of using performance indicators in the real-time analysis systems. Especially, the data feedback in real-time has been used within many purposes in the coaching such as confirmation of its observations, information of the game situation, oppositional analysis and educational tool to players with visual impact.

Consequently, it was concluded that performance indicators for real-time and lapsed-time systems have to be chosen by scientific methods in order to ensure that these variables are selected with rationality and objectivity. The scientific methods for the performance indicators for real-time and lapsed-time analysis systems are concerned in rationalised data sets, optimal set of performance indicators, effectiveness of use the performance indicators selected and their reliabilities. In addition, the way to reduce the limitations of real-time and lapsed-time systems should be considered within the development of data entry structures addressing ergonomic issues and cooperation between coach and analysts.
STATEMENT

Certificate of candidate in respect to an individual's work

I certify that the whole of this work is the result of my individual effort, that all quotations from books and journals have been acknowledged, and that the work count given below is a true and accurate record of the works contained within (omitting contents pages, acknowledgements, indexed, tables, figures, references and appendices).

Word Count: 25,394

Signed:

Date: 16 May 2008

Important Notes:
This certificate should be attached to any individual work presented by a candidate other than that done under examination conditions.

The thesis, if successful, may be made available for inter-library loan or photocopying (subject to the law of copyright), and that the title and summary may be available to outside organisations.
DECLARATION

I declare that this dissertation my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary institution.

HYONG JUN CHOI
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>6</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>8</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>10</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>11</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER ONE:</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>14</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 NATURE OF PERFORMANCE ANALYSIS</td>
<td>15</td>
</tr>
<tr>
<td>1.1.1 PERFORMANCE ANALYSIS OF SPORTS</td>
<td>15</td>
</tr>
<tr>
<td>1.1.2 DESIGNING NOTATION SYSTEMS</td>
<td>18</td>
</tr>
<tr>
<td>1.1.3 RELIABILITY IN PERFORMANCE ANALYSIS IN SPORTS</td>
<td>20</td>
</tr>
<tr>
<td>1.1.4 DATA SET ANALYSIS – PERFORMANCE INDICATORS AND MODELLING</td>
<td>23</td>
</tr>
<tr>
<td>1.1.5 OPTIMAL SETS OF PIS FOR PERFORMANCE INDICATORS</td>
<td>25</td>
</tr>
<tr>
<td>1.1.6 EFFECTIVENESS OF RT AND LT SYSTEMS</td>
<td>27</td>
</tr>
<tr>
<td>1.2 THE AIM OF THE STUDY</td>
<td>30</td>
</tr>
<tr>
<td>1.3 RATIONALE OF THE THESIS STRUCTURE</td>
<td>31</td>
</tr>
<tr>
<td>1.4 GENERAL DEFINITIONS OF TERMS</td>
<td>33</td>
</tr>
<tr>
<td>CHAPTER TWO:</td>
<td></td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td>2. INTRODUCTION</td>
<td>35</td>
</tr>
</tbody>
</table>
2.1 DESIGNING SYSTEMS TO OPTIMISE FEEDBACK IN PERFORMANCE ANALYSIS
2.2 TECHNOLOGIES IN PERFORMANCE ANALYSIS OF SPORTS
2.3 PERFORMANCE INDICATORS IN SPORT
2.4 ISSUES OF MEASUREMENT ERRORS AND STATISTICAL ANALYSIS ON PERFORMANCE ANALYSIS DATA
2.5 NATURE OF FEEDBACK
2.6 SUMMARY

CHAPTER THREE:
THE INTRODUCTION OF THE REAL TIME ANALYSIS SYSTEM FOR BASKETBALL ANALYSIS USED IN THE STUDIES

3.1 INTRODUCTION
3.2 THE STRUCTURES OF THE REAL-TIME ANALYSIS SYSTEM USED
 3.2.1 EQUIPMENT AND ITS SETTINGS
 3.2.2 SUBJECTS
 3.2.3 GRAPHIC USER INTERFACE (GUI) OF THE REAL-TIME ANALYSIS SYSTEM FOR BASKETBALL
 3.2.4 THE DATA PROCESS WITHIN THE SYSTEM
 3.2.5 THE DATA OUTCOME OF THE SYSTEM
3.3 PILOT STUDY IN THE REAL-TIME FEEDBACK USING THE SYSTEM
3.4 QUALITATIVE STUDY IN THE THESIS
 3.4.1 RATIONALE OF THE STUDY
 3.4.2 METHODOLOGICAL ISSUE OF THE INTERVIEWS USED IN THE THESIS
 3.4.3 ANALYSIS OF THE INTERVIEW TRANSCRIPTS
3.5 DISCUSSION
 3.5.1 DATA INPUT METHODS IN THE SYSTEM
 3.5.2 REAL-TIME ANALYSIS DATA USED IN THE STUDIES
 3.5.3 QUALITATIVE STUDY
CHAPTER FOUR:
RELIABILITY TESTING OF REAL-TIME SYSTEMS

4.1 INTRODUCTION 103
4.2 STUDY 1 – THE INTER-OPERATOR RELIABILITY FOR
SIMULATED OBSERVATIONS OF REAL-TIME ANALYSIS
OF BASKETBALL 105
 4.2.1 METHODS 105
 4.2.2 RESULTS 107
4.3 STUDY 2 – THE INTER-OPERATOR RELIABILITY OF
REAL-TIME ANALYSIS OF BASKETBALL 109
 4.3.1 METHODS 109
 4.3.2 RESULTS 112
4.4 DISCUSSION 116
4.5 CONCLUSIONS 120

CHAPTER FIVE:
VALIDITY OF PERFORMANCE INDICATORS USED IN REAL-TIME
ANALYSIS SYSTEMS

5.1 INTRODUCTION 122
5.2 METHODS 126
5.3 RESULTS 129
5.4 DISCUSSION 131
5.5 CONCLUSIONS 134

CHAPTER SIX:
The Identification of an Optimal Set of Performance
Indicators for a Real-Time Analysis System

6.1 INTRODUCTION 138
6.2 THE IDENTIFICATION OF VALID PERFORMANCE
INDICATORS BY NEURAL-NETWORKS (NN) AND
MULTIPLE-LINEAR REGRESSION (MLR) 140
 6.2.1 METHODS 140
6.2.2 RESULTS

6.3 THE IDENTIFICATIONS OF VALID PERFORMANCE
INDICATORS BY PRINCIPLE COMPONENTS ANALYSIS
(PCA)

6.3.1 METHODS
6.3.2 RESULTS

6.4 THE IDENTIFICATIONS OF VALID PERFORMANCE
INDICATORS BY COACH'S COMMENTS

6.4.1 METHODS
6.4.2 RESULTS

6.5 DISCUSSION

6.5.1 ARTIFICIAL NEURAL NETWORK AND MULTIPLE
LINEAR REGRESSION MODELS

6.5.2 PRINCIPLE COMPONENTS ANALYSIS

6.5.3 COACH'S COMMENTS IN INTERVIEWS

6.6 CONCLUSIONS

CHAPTER SEVEN:
UTILISATION OF PERFORMANCE INDICATORS WITHIN THE REAL-
TIME ANALYSIS SYSTEM AND ITS EVALUATION IN PRACTICE

7.1 INTRODUCTION

7.2 METHODS

7.3 RESULTS

7.4 DISCUSSION

7.5 CONCLUSIONS

CHAPTER EIGHT:
DISCUSSION

8.1 RELIABILITY ISSUES ON THE REAL-TIME AND LAPSED-
TIME DATA

8.2 RATIONALITY OF DATA SETS FOR REAL-TIME
ANALYSIS

8.3 IDENTIFICATION OF THE OPTIMAL PERFORMANCE
INDICATORS FOR THE REAL-TIME AND LAPSED-TIME
Figure 1.1	Simple schematic diagram representing the coaching process (Franks et al., 1983)	28
Figure 2.1	Dynamic model of the feedback process within a team sport setting (O'Donoghue, 2006)	42
Figure 2.2	Functional model of the feedback process (O'Donoghue, 2006)	43
Figure 2.3	Camera placement at Old Trafford and Reebok Stadiums (Valter et al., 2006)	48
Figure 2.4	A schematic diagram representing the coaching process, utilising some of the computer-aided analysis and feedback technology (Hughes & Franks, 1997c, Figure 1.3, p. 16)	60
Figure 2.5	Schematic diagram to illustrate how the learning process is affected by various augmented information sources. Error-detection and correction processes are informed by augmented information in the form of feedback and pre-practice information. This information influences the intention and goals of the performer and subsequently the movement response (Hodges & Franks, 2004, Figure 2.1, p.18).	64
Figure 3.1	The setup of the data-gathering of the real-time analysis system for basketball used	80
Figure 3.2	The graphic user interface of the software used for the real time analysis system of basketball	81
Figure 3.3	An example of the completed data collection with the system	82
Figure 3.4	An example of the game box score from the real-time analysis system for basketball.	84
Figure 3.5	The shot chart of the team data in the real-time analysis system	85
Figure 3.6	The shot chart of individual data in the real-time analysis system.	86
Figure 3.7	The box score of results in the pilot study.	87
Figure 3.8	The shot chart of team data based on overall results in the pilot study.	88
Figure 3.9	The shot chart of individual data based on the overall	89
results in the pilot study.

Figure 6.1 A flowchart of project progress from data collection to comparisons of 4 prediction models 142

Figure 6.2 Scree plot of eigenvalues from exploratory PCA. 146

Figure 6.3 The data feedback procedure within real-time analysis of basketball. 150

Figure 7.1 Schema of the coaching process (Franks et al, 1983). 159

Figure 7.2 A more complex schema of the coaching process. 162

Figure 7.3 The interview process within the feedback of real-time analysis system. 166

Figure 7.4 The total frequencies of 2 point made (left) and the total frequencies of 2 points attempts in different feedback types (right). 170
LIST OF TABLES

Table 3.1 The summary of estimated presses by key and mouse in Cybersports for basketball 4.0.
Table 3.2 The summary of the analysis time, the presses and scores difference in 2005–2006 England Women Senior Basketball Div 2 league.
Table 3.3 The summary of the analysis time, the presses and scores difference in 2006–2007 England Women Senior Basketball Div 2 league.
Table 3.4 The comparisons of presses by key, mouse and menu drops within the Focus X2 package with tennis strategy data.
Table 4.1 Classifications of different agreement levels based on the total number of differences between two simulated observations of a single quarter of a basketball match.
Table 4.2 Inter-operator reliability test results for each pair of simulated observations of a single quarter of a basketball match.
Table 4.3 Inter-operator reliability test results for each performance indicator between simulated observations representing acceptable agreement of a notation of a single quarter of a basketball match.
Table 4.4a Definitions of performance indicators notated using CyberSports for basketball software in offensive / defensive situations of games.
Table 4.4b Definitions of performance indicators notated using CyberSports for basketball software in combination situations of games.
Table 4.5 The experimental procedures used to limit the different types of error (as defined by James et al., 2002) associated with notating a basketball match using CyberSports for basketball software.
Table 4.6 Inter-operator reliability test results for each pair of participants notating a single quarter of a basketball match.
Table 4.7 Inter-operator reliability test results for each performance indicator between participants 1 and 3 notating a single quarter of a basketball match.
Table 5.1 The summary of subjects used for the chapter 5.
Table 5.2 The won/lost status of the separated data sets by the teams and players.

Table 5.3 A comparison of z-values on the Wilcoxon Signed Ranks tests to discriminate winning and losing performance within match and quarter sets on the basketball data.

Table 5.4 A comparison of z-values on the Wilcoxon Signed Ranks tests to discriminate winning and losing performance within match and set on the tennis data.

Table 6.1 The summary of the data used and purposes of use the data.

Table 6.2 The accuracies of the predictions by different numbers of variables (%sets correct).

Table 6.3 Component Matrix by the Principle Components Analysis (a).

Table 6.4 Rotated Component Matrix by the Principle Components Analysis (a).

Table 6.5 The summaries of performance indicators selected by the interviews.

Table 7.1 The results of comparison between one-way feedback and interactive feedback.

Table 7.2 The summary of the agreement of effectiveness on the performance indicators used.
LIST OF EQUATIONS

Equation 2.1 The equation of percentage error calculation (Hughes et al., 2004a) 57
Equation 2.2 The equation for total percent agreement 58
Equation 2.3 The equation of Kappa value 58
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The cross-tabulation for simulated observers for 4 scenarios of agreement</td>
<td>209</td>
</tr>
<tr>
<td>2 Results of reliability tests (Chi-square, Pearson's r, % errors, kappa) between observers</td>
<td>213</td>
</tr>
<tr>
<td>3 The results of Wilcoxon Signed Ranks test for different data scales in basketball data (Whole data sets)</td>
<td>224</td>
</tr>
<tr>
<td>4 The results of Wilcoxon Signed Ranks test for different data scales in tennis data (Whole data sets)</td>
<td>230</td>
</tr>
<tr>
<td>5 SPSS results of Multiple Linear Regression on set data of tennis</td>
<td>236</td>
</tr>
<tr>
<td>6 SPSS results of Principle Component Analysis on set data of tennis</td>
<td>238</td>
</tr>
<tr>
<td>7 The scripts of interviews with the basketball coach</td>
<td>240</td>
</tr>
<tr>
<td>8 SPSS results of Mann-Whitney U tests on effectiveness of using performance indicators</td>
<td>258</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

First of all, I would like sincerely thank my director of study, Professor Mike Hughes, who has advanced significantly my experience and knowledge to enable this Ph.D. research programme. Four years ago, he introduced me into this field in sports, and I could not be here at this time without his wide knowledge, supervision and help.

Another acknowledgement must go to Dr. Peter O’Donoghue, Discipline Director of performance analysis of sports in UWIC and Chair of the International Society of Performance Analysis of Sport. I am grateful to him for his advice and help in solving many of the detailed statistical research problems through his wide knowledge of statistics, mathematics and his thorough application and supervision.

I would also thank Dr. Nic James, who was a late addition to my supervisory team, but he gave me a lot of encouragement with his experiences, especially through the amendment process. I am immensely grateful to him for all the effort and work, I would not be here without his energy and kindness.

This research was, at various times, with UWIC Women’s basketball team. So I would like to thank Damian Jennings, Head Coach of UWIC Women basketball, who gave me a chance to gather the data for this work. I, also, would like to thank to all players and
performance analysis team mates who gave me a lot of encouragement, excitement and kindness.

I am grateful to David Cobner, Head of Cardiff School of Sports who has supported me financially for this work. There are also many other people who should have my acknowledgment - all members of UWIC staff in the Cardiff School of Sports. They have always encouraged me for this work with their kindness.

My personal acknowledgments go to my parents. They have always supported me, most honourably. Without them, I would not be able to walk the path of this work with success.

My final, and most heartfelt, acknowledgment must go to my fiancé Makiko Mizoi. Makiko has studied and worked diligently, and successfully, for more than four years to show me life outside this work. Her support, encouragement, and companionship have turned my journey through this research programme into a pleasure. For all that, and for being everything I am not, she has my everlasting love.