Binding of two bacterial biofilms to dialkyl carbamoyl chloride (DACC)-coated dressings in vitro

*R A Cooper PhD, Professor of Microbiology and L Jenkins BSc (Hons) Technician/demonstrator.

*Corresponding author:
Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK.

Tel: +44(0)2920 416845
Email: rcooper@cardiffmet.ac.uk
Abstract

Objective: To date only planktonic bacteria have been shown to bind irreversibly to DACC-coated Cutimed® Sorbact® dressings, this study, therefore, was designed to determine whether bacterial biofilm bound to the DACC-coating of Cutimed® Sorbact® dressings in vitro.

Method: Samples of DACC-coated Cutimed® Sorbact® dressings and uncoated control dressings (supplied by BSN Medical Ltd, Hull) were placed into contact with plastic coverslips on which biofilms of either Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus (MRSA) had been cultivated for 24 hours. Dressing samples were examined by scanning electron microscopy to detect the presence of biofilm.

Results: P. aeruginosa biofilm bound avidly to both DACC-coated and uncoated dressing samples. MRSA bound more extensively to DACC-coated Cutimed® Sorbact® dressings than to uncoated samples.

Conclusion: Biofilms of each of two test bacteria bound to Cutimed® Sorbact® dressings in vitro and the DACC-coating on the surface of Cutimed® Sorbact® dressings enhanced the binding of MRSA biofilm.

Declaration of interest: This study was supported by BSN medical Ltd (Hull). The company had no influence on the experimental design, interpretation of results or writing of the manuscript. The authors have no conflicting interests to declare.
Keywords: DACC, Cutimed® Sorbact®, biofilm, irreversible binding, MRSA, Pseudomonas aeruginosa.

Introduction
The need to reduce wound bioburden has long been recognised. However, using the ability of microbial species to bind to wound dressings is a relatively recent approach to wound management that provides an antimicrobial effect without the use of an active inhibitory agent or the risk of cytotoxicity to host tissues. Bacteria exist largely in hydrophilic environments where they require water molecules for survival. Their surface layers contain both hydrophilic (water loving) and hydrophobic (water repellent) components which facilitate interaction with either hydrophilic or hydrophobic molecules, respectively. Bacterial cell surfaces contribute to hydrophobic interactions with host cells and inanimate surfaces that are important in the initiation of infections and biofilm formation.

In 2006 the influence of cultural conditions on cell-surface hydrophobicity (CSH) of five planktonic bacteria (Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, Enterobacter cloacae and Pseudomonas aeruginosa) was investigated and the binding capacity to a dressing coated with a hydrophobic fatty acid derivative called dialkyl carbamoyl chloride (DACC) was determined using S. aureus, P. aeruginosa, Candida albicans, Enterococcus faecalis, Bacteroides fragilis and Fusobacterium nucleatum. For P. aeruginosa maximum binding was observed at 2 hours and remained stable for 20 hours showing that bacteria bound to the dressing did not multiply. A recent investigation into the CSH of Mycobacterium ulcerans found it to be higher than that of E. coli, P. aeruginosa and S. aureus. Additionally, planktonic cultures of this causative agent of Buruli ulcer bound more effectively to DACC-coated dressing than to uncoated control dressing. Planktonic cultures
of two strains of methicillin-sensitive *S. aureus* (MSSA) and nine clinical strains of methicillin-resistant *S. aureus* MRSA displayed equal binding capacity to DACC-coated dressings.\(^5\)

Binding of a range of wound colonising bacterial species to DACC-coated dressing has, therefore, been demonstrated in the laboratory using planktonic cultures. Hydrophobic interaction was the rationale for a clinical study in which DACC coated Cutimed® Sorbact® dressings were used to investigate reductions in wound bioburden.\(^6\) In this study quantification of bacterial burden in 20 chronic wounds treated with DACC coated Cutimed® Sorbact® dressings showed that of the 15 wounds with a positive clinical outcome, a significant decrease in bacterial load was found in 10 but that it was unchanged in 5. The remaining 5 patients with a negative clinical response showed a non-significant decrease in bacterial load.\(^6\)

Since the demonstration of an association between wound chronicity and the presence of biofilm,\(^7,8\) the need to reduce wound bioburden which may include biofilm has been recognised. Binding of biofilm to Cutimed® Sorbact® dressings has not yet been demonstrated, so this study was designed to investigate whether biofilms of two common wound pathogens bound *in vitro* and whether the DACC coating on Cutimed® Sorbact® dressings promoted increased binding.

METHOD

Test organisms used

Pseudomonas aeruginosa and methicillin-resistant *Staphylococcus aureus* (MRSA) were used throughout this study. These clinical isolates had been isolated from different out-patients attending a local wound care clinic and were stored at -80°C until required.

Dressings utilised
BSN medical Ltd provided samples of sterile Cutimed® Sorbact® (batch number 72164-01 #807093, expiry date 04/2014) and sterile Cutimed® Sorbact® dressings manufactured without DACC coating (batch number 72632). Dressing samples were cut under aseptic conditions into circles with a 15 mm diameter for testing.

Cultivation of 24 h established biofilms

A starter culture of each test organism was cultivated in 10 ml tryptone soya broth (TSB; Oxoid, Cambridge, UK) overnight at 37 °C. Immediately before use each starter culture was diluted in sterile TSB (1/100 dilution for *P. aeruginosa* and 1/500 dilution for MRSA) and 2 ml dispensed into wells of a 24 well microtitre plate (Nunc, Roskilde, Denmark) that contained a sterile Thermanox plastic coverslip (Agar Scientific, Stansted, UK). Three wells in each plate contained only 2 ml TSB and coverslip to act as a negative control to test for sterility and non-specific binding and three wells contained only 2 ml diluted inoculum as a positive control for untreated biofilm. All plates were incubated statically at 37°C for 24 h to allow biofilm to establish on the coverslips.

Binding of 24 h established biofilm to dressing samples

Into selected wells a circular dressing sample was aseptically introduced followed immediately by a sterile glass coverslip to ensure contact between dressing and biofilm and to prevent the dressing floating away from the biofilm layer (Figure 1). DACC-coated and uncoated dressings were tested in duplicate in the same microtitre plate; positive controls (no dressings) and negative controls (no bacteria) were included in all plates. Plates were incubated at 37°C and at known time intervals (normally up to 3 h) and wells were sampled to retrieve the dressing, making sure that the orientation of the sample was known (i.e. surface in contact with the biofilm). Biofilm on the surface of the dressing was visualised by scanning electron microscopy
Scanning electron microscopy (SEM) of dressing samples.

Dressing samples were transferred to wells in fresh microtitre plates containing 200 µl 2.5% glutaraldehyde for 5 min to fix the attached biofilm. After gentle washing in phosphate buffered saline (PBS; Oxoid, Cambridge, UK) and storage overnight at 4°C, fixed samples were treated with 1% osmium tetroxide for 45 min, dehydrated in each of 50, 70 and 90% ethanol, followed by three changes of absolute alcohol for 10 min. Fixed dressings were then mounted onto pins dried in a critical dryer, coated by gold spluttering and examined in a 5200LV Jeol scanning electron microscope (Jeol Ltd, Hertfordshire, UK). For each sample in every experiment at least four representative images were captured, usually three at low magnification (typically 100 X) and at least one at a higher magnification size (between 200 and 10,000 X).

Images of the dressing samples were evaluated for the extent of biofilm coverage by six volunteers. These were postgraduate biomedical science students and research technicians who had undergone a training programme using suitable sample images and a scoring system (Table 1 and Figure 2). For each time point and each test organism, three images coded to ensure anonymity were scored between 0 (no binding) and 4 (extensive binding of biofilm to dressing) by each volunteer, who worked independently. Mean scores and standard deviations were calculated and plotted versus time. Experiments were performed on two occasions.

RESULTS

The presence of biofilm on dressing samples was determined using the surface that had been in contact with the biofilm established on the plastic coverslip, rather than the distal surface that had been in contact with the glass coverslip (Fig. 1). It was seen that biofilm transferred from the plastic coverslips directly to dressing samples (Fig. 3a) and did not
migrate extensively through the dressing sample to the distal surface during the contact times tested here (up to 3 hours) (Fig. 3b). Dressing samples exposed to \textit{P. aeruginosa} biofilm indicated rapid and extensive acquisition of biofilm (Fig. 4); the extent of biofilm associated with DACC-uncoated (Fig. 4a and b) and DACC-coated dressings (Fig. 4c and d) showed no marked differences. Binding of MRSA biofilm to dressings was initially (Fig. 5a and c) at a slower rate compared to \textit{P. aeruginosa} (Fig. 4a and c). After a 3 hour contact period the coverage of uncoated dressing samples by MRSA biofilm (Fig. 5b) was not as extensive as that of DACC-coated samples (Fig. 5d), suggesting that the presence of the hydrophobic fatty acid derivative on the dressing surface did enhance biofilm binding. These observations were supported by the dressing coverage evaluations performed by the volunteer group (Fig. 6).

In order to determine whether the bacterial cells attached to DACC-coated dressings were present as planktonic cells or as biofilms, some images at higher magnification were collected from \textit{samples tested with each of} \textit{P. aeruginosa} and MRSA. Biofilm structures were evident (Fig. 7 and Fig. 8, respectively).

DISCUSSION

Using scanning electron microscopy (SEM) to observe the extent of binding of established biofilm it was found that DACC enhanced the binding of MRSA biofilm to Cutimed® Sorbact® compared to uncoated dressing samples (Fig. 5d and 6b); this is in line with deductions about binding of planktonic \textit{staphylococci} to Cutimed® Sorbact®. \textit{P. aeruginosa}, however, bound similarly to coated and uncoated dressings. These differences probably reflect the distinct adhesins present on the surface of each species and the sticky nature of the extracellular polymeric material produced by \textit{Pseudomonas}. Binding of established biofilms to dressing samples started within an hour of contact time for both test organisms. This
The ability of some wound dressings to sequester and immobilise microbial cells from simulated wound fluid in vitro has been described and benefits to infection control recognised. Although the findings in this small laboratory study suggest a potential for Cutimed® Sorbact® to lower the surface bioburden of wounds by binding biofilms as well as planktonic bacteria, it can only be confirmed in vivo. To date two pertinent clinical studies have been published. In one, using traditional culturing techniques of wound swabs to monitor the bioburden of aerobic bacteria in hard to heal leg ulcers following application of either Aquacel Ag or Cutimed® Sorbact® changed daily for a total observation period of four days, significant reductions were demonstrated. In the other a molecular approach using punch biopsies collected weekly from chronic leg ulcers treated twice a week with Cutimed® Sorbact® over a four week period showed a significant decrease in the bacterial load of 10 out of 15 healing wounds, but no change in 5 out of 5 non-healing wounds. Clinical observations indicated that Cutimed® Sorbact® resulted in completely successful therapy of 7 out of 20 patients and an improvement for 9 further patients, but an analysis of information on bacterial load obtained from wound swabs taken from the same patients did not correlate with clinical outcome. This raises the importance of considering the differential effects of topical interventions on bacterial species unequally distributed throughout the wound environment. Biofilm is not universally located at the surface of the wound and it may be embedded within deeper tissue where it may not be affected by a therapy confined to the wound bed. The capacity of topical antimicrobial interventions to control biofilm in deep tissue must, therefore, always be evaluated clinically.
The fact that biofilms are especially tolerant to antibiotics14 explains why some wounds fail to respond to antimicrobial interventions. Until effective antibiofilm agents are developed, the ability of a dressing to bind biofilms provides a non-invasive means to remove biofilm from the surface layer of a wound without sharp debridement or potentially cytotoxic chemical interventions. Another advantage of this approach is the diminished risk of the emergence of dressings-resistant species.

An important limitation of this study is that it contains only \textit{in vitro} data, which is not necessarily transferable to the clinical situation. We utilised pure cultures of two representative bacteria that had been isolated from out-patients with chronic wounds attending a local hospital and cultivated them in microtitre plates for 24 hours prior to contact with dressing samples. Under these ‘artificial conditions’ the biofilms generated would not have been mature biofilms and would have behaved differently if they had been established for longer periods. There are many laboratory models for the study of biofilms, but none can accurately reproduce the complex conditions within a wound. Many experiments have used \textit{P. aeruginosa} cultivated in flow chambers where it grows to produce mushroom-like structures, but the relevance of these systems to human chronic infections has been questioned,15 since such structures have not been observed yet.16 Most chronic wounds are characterised by polymicrobial communities of microbial species16-18 and mixed cultures are utilised in some experimental models.19-21 Also animal models provide can provide more realistic conditions, even if confined to pure cultures.21 Laboratory investigations may help to elucidate mechanisms of action, but standardised methods for evaluating anti-biofilm agents have not yet been devised. However, it is clear that only clinical observations can establish the efficacy of antimicrobial interventions.

\textbf{CONCLUSION}
This is the first demonstration that DACC-coated Cutimed® Sorbact® dressings bind MRSA and *P. aeruginosa* biofilms *in vitro*. Whether this occurs widely *in vivo* has yet to be demonstrated, but this will only be known after the development of a routine biofilm diagnostic test that can be used before and after the clinical use of Cutimed® Sorbact®.

References

<table>
<thead>
<tr>
<th>score</th>
<th>Biofilm covering of the wound dressing</th>
<th>Example image</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No biofilm visible</td>
<td>Figure 2a</td>
</tr>
<tr>
<td>1</td>
<td>limited coverage and most of the dressing fibres are still visible (1-30% of the dressing covered)</td>
<td>Figure 2b</td>
</tr>
<tr>
<td>2</td>
<td>moderate coverage (31-60% of the dressing covered)</td>
<td>Figure 2c</td>
</tr>
<tr>
<td>3</td>
<td>marked coverage but some parts of the dressing still visible (61-90% of the dressing covered)</td>
<td>Figure 2d</td>
</tr>
<tr>
<td>4</td>
<td>extensive coverage with hardly any parts of the dressing visible (91-100% of the dressing covered)</td>
<td>Figure 2e</td>
</tr>
</tbody>
</table>

Table 1: Scoring system used by trained volunteers to evaluate the extent of coverage of biofilm associated with dressing samples
Figure 1: diagrammatic view of a test well within the microtitre plate

- **glass coverslip** to maintain contact of dressing to biofilm
- **culture medium**
- **24 h biofilm cultivated on a plastic coverslip**
- **dressing**
Figure 2: examples of images used to assess the extent of biofilm coverage of dressing samples (see Table 1)
2a: no biofilm present; 2b 1-30% of dressing covered by biofilm; 2c: 31-60% of dressing covered by biofilm;
2d: 61-90% dressing covered by biofilm; 2e: 91-100% dressing covered by biofilm.
Figure 3: Biofilm of *P. aeruginosa* bound to dressing samples after one hour contact

3a: showing the dressing surface in direct contact with the biofilm established on the plastic coverslip in test well

3b: showing the surface not in contact with biofilm in the test well
Figure 4: Binding of *P. aeruginosa* biofilm to dressing samples
a: uncoated after 1 h contact; b: uncoated after 3 h contact; c: DACC-coated after 1 h contact; d: DACC-coated after 3 h contact.
Figure 5: Binding of MRSA biofilm to dressing samples
a: uncoated after 1 h contact; b: uncoated after 3 h contact; c: DACC-coated after 1 h contact; d: DACC-coated after 3 h contact.
Figure 6: Biofilm coverage of dressing samples.
(a) *Pseudomonas aeruginosa* and (b) MRSA
Figure 7: *Pseudomonas* biofilm attached to DACC-coated Cutimed® Sorbact® dressings
Figure 8: MRSA biofilm attached to DACC-coated Cutimed® Sorbact® dressings