I. Abstract

Probiotic bacteria have been added to dairy products and as adjunct cultures to impart health benefits to consumers. However, to gain maximum therapeutic benefit, the bacteria must remain viable over the entire shelf-life period of the product. Studies have shown that the viability of these bacteria decreases significantly over this period and in some products their presence is negligible towards the end of the shelf life.

Various studies have used different strains of probiotics to get better viability but even the probiotic with special characteristics such as oxygen tolerant and acid resistance, still face significant survival problems in dairy products. Several studies have indicated that carbohydrates, peptides and amino acids added to dairy products at various concentrations showed positive effect on the growth and survival of many strains of probiotic bacteria in dairy products. *Bifidobacterium lactis* Bb12 has been found to have a wide use in dairy products because of their oxygen tolerance and acid resistance, which made it one of the chosen strain in this study.

The growth rate was indirectly measured by the rate of change of the pH in fermented skim milk while the survival was measured as the total count, cfu/ml, over the storage period of 28 days at 4°C±1. The results showed that the addition of prebiotics such as fructooligosaccharides (FOS) at 5% or Inulin at 3% to skimmed milk enhanced the growth and survival of *B lactis* Bb12 in comparison to the control. The growth rate was better in both cases and the survival in the sample with 5% FOS was significantly better (P<0.05).

The effect of the hydrolyzed skim milk on the growth and survival of *B lactis* Bb12 showed that skim milk with Degree of Hydrolysis DH<5% with trypsin at 1:20000, enhanced the growth and survival significantly (P<0.05) compared to the control. The synergistic effect of the combination of prebiotics, fructooligosaccharides (FOS) at 5% and Inulin at 3%, and DH<5% hydrolysed milk (called Mix Design Skim Milk or MDSM) on the growth and survival of *B lactis* Bb12 showed to be the best combination with significant (P<0.05) growth rate and survival for Bifidobacteria and Lactobacillus with a decrease in fermentation time by 12 hours and a significant (P<0.05) survival compared to the control.

The sensory qualities of the product made with MDSM and *B lactis* Bb12 showed to be of good quality and comparability to the commercially available products.
II. Declaration and Statements

DECLARATION

This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

Signed .. (candidate)
Date ..

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated. Where correction services have been used, the extent and nature of the correction is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed .. (candidate)
Date ..

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed .. (candidate)
Date ..

NB: Candidates on whose behalf a bar on access has been approved by UWIC (see Note 10), should use the following version of Statement 2:

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans after expiry of a bar on access approved by UWIC.

Signed .. (candidate)
Date ..
III. Acknowledgement

First and foremost I would like to offer my sincerest thanks and gratitude to my supervisors, Dr. Ara Kanekanian and Professor Adrian Peters, who have provided the utmost support throughout my thesis with their guidance and knowledge whilst allowing me the room to work independently. Without their encouragement and guidance, this thesis would not have been completed or written and a student could not wish for better or friendlier supervisors to complete a Ph.D.

Moreover, I have been blessed and privileged to work with a friendly and cheerful group of staff on a daily basis. I would like to thank Lydia Davies who provided me with her encouragement daily and was my family here in England and always provided daily life advice to me on how to achieve a healthy body and a healthy mind. Jane Lewis, for her administrative support and guidance to all of the Ph.D. students. I would like to also thank Dr. Ruth Fairchild who helped me with my sensory testing and analysis. Finally, I would like to thank all of the great people I met at the University of Wales Institute that have influenced me and my life path in so many positive ways.

To my wife Dr. Sahar Swidan, who provides me with all her support and love on a daily basis to finish my Ph.D. and for being my solid rock to lean on through my most difficult times.

To The Aga Khan Foundation for providing me with the scholarship that gave me such a great chance to achieve my higher education goals. I hope to pay them back by providing the best service that I can to the world and hope to assist other students to have the same chance that I was offered and for that I will forever be grateful.

Finally, I would like to thank my parents and family for their never ending support and nurturing through all stages of my life. I love you all and I will forever be grateful for your guidance and support.
IV. Abstracts and Posters

- Effect of the enzymatic hydrolysis of skim milk on the growth of Bifidobacterium lactis (Bb12), Nedal A. Swidan, Ara D. Kanekanian & Adrian C. Peters. School of Applied Sciences, University of Wales Institute, Cardiff, Western Avenue, Cardiff CF5 2YB, 158th. Meeting 3–6 April 2006, University of Warwick, UK.

- Effect of the enzymic hydrolysis of skim milk on the growth of Bifidobacterium lactis (Bb12), Nedal A. Swidan, Ara D. Kanekanian & Adrian C. Peters School of Applied Sciences, University of Wales Institute, Cardiff, Western Avenue, Cardiff CF5 2YB IDF Symposium on Scientific and Technological Challenges in Fermented Milk / IDF Dairy Science and Technology Week 15-19 May 2006, Sirmione, Italy.
V. Table of Contents

I. ABSTRACT I

II. Declaration and Statements II

III. Acknowledgement III

IV. Abstracts and Posters IV

V. Table of Contents V

VI. Table of Tables IX

VII. Table of Figures XI

VIII. List of Abbreviations XVI

CHAPTER ONE

INTRODUCTION 2

CHAPTER TWO

LITERATURE REVIEW 7

2.1 Fermented Milk and Probiotic Bacteria 8
2.2 Functional Food and Probiotic Bacteria 11
2.3 Health Benefits for Human 13
 2.3.1 Health Benefits: 13
 2.3.2 Gastrointestinal Microflora Balance and Probiotic 17
2.4 History of Probiotics and Its Development 18
 2.4.1 History and Definition of Probiotic 18
 2.4.1.1 History and Development of Probiotics 18
 2.4.1.2 Definition of Probiotics 19
2.5 Probiotics Characteristics 21
 2.5.1 Characteristics of Lactobacillus and Bifidobacteria 21
 2.5.1.1 Lactobacillus Spp 21
 2.5.1.2 Bifidobacterium Spp 22
2.6 Regulations and Safety of Probiotics in Manufacture: 23
2.7 Prebiotic and Their Beneficial Effect on Human Health 27
 2.7.1 Inulin 28
 2.7.2 Oligosaccharides 31
 2.7.2.1 Galactooligosaccharide (GOS) 31
 2.7.2.2 Fructooligosaccharides (FOS) 33
 2.8 Factors Affecting the Growth and Survival of Lactobacillus and Bifidobacterium in Milk Products 38
CHAPTER THREE

PREBIOTICS (FOS & INULIN) EFFECTS ON PROBIOTICS GROWTH AND SURVIVAL IN SKIM MILK

3.1 Introduction
3.2 Synergistic interaction among Inulin, Fructooligosaccharides (FOS) And Probiotics
3.3 Aim
3.4 Objective
3.5 Material and Methods
 3.5.1. Preparation of FOS, Inulin in the Skim Milk
 3.5.2. Preparation of Bifidobacterium Lactis Bb12 Culture
 3.5.3. Measurement of the Growth and Survival of Bifidobacterium Lactis Bb12
 3.5.4 Statistical Analysis
3.6 Results and Discussion
 3.6.1 Growth Rate of Bifidobacterium Lactis Bb12 in FSM and ISM Environment

CHAPTER FOUR

HYDROLYSIS SKIM MILK EFFECTS ON PROBIOTICS GROWTH AND SURVIVAL

4.1 Introduction
4.2 Aim
4.3 Objective
4.4 Material and Methods
 4.4.1 Preparation of Trypsin and Skim Milk Hydrolysis
 4.4.2 Milk Hydrolysis
 4.4.3 Preparation of Bifidobacterium Lactis Bb12 Culture
 4.4.4 Measurement of the Growth and Survival of Bifidobacterium Lactis Bb12
 4.4.5 Statistical Analysis
4.5 Results and Discussion
 4.5.1 Growth of Bifidobacterium Lactis Bb12 in Hydrolysed Skim Milk (HSM)
 4.5.2 Survival of Bifidobacterium Lactis Bb12 in HSM
4.6 Conclusions
CHAPTER FIVE
SYNERGISTIC EFFECT OF PREBIOTICS AND HYDROLYSIS SKIM MILK
ON THE GROWTH AND SURVIVAL OF BIFIDOBACTERIA

5.1 Introduction 89
5.2 Aim 92
5.3 Objectives 92
5.4 Material and Methods 93
 5.4.1 Preparation of Trypsin, FOS and Inulin 93
 5.4.1.1 Milk Hydrolysis 93
 5.4.1.2 Adding FOS and Inulin 95
 5.4.2 Preparation of Bifidobacterium Lactis Bb12 Culture 95
 5.4.3 Preparation of Survival Samples 95
 5.4.4 Preparation of Bifidobacterium Spp. From Freeze-Dried NCIMB Culture 96
 5.4.5 Statistical analysis 97
5.5 Result and Discussions 98
 5.5.1 The Synergistic Effect of Prebiotics and Hydrolysed Skim Milk on the Growth of B. Lactis Bb12 100
 5.5.2 Study the synergistic effect of prebiotics and hydrolysis skim milk on the survival of Bifidobacterium Lactis Bb12 107
 5.5.3 The effect of the optimum combination of prebiotics and hydrolysed skim milk on the growth and survival of different probiotics in skim milk 113
 5.5.3.1 Growth of different probiotic Bacteria In MDSM product 115
 5.5.3.2 Survival and Viability of different Probiotic Bacteria in the MDSM product 121
5.6 Conclusion 131

CHAPTER SIX
SENSORY EVALUATION OF FERMENTED PREBIOTICS SKIM MILK
PRODUCT

6.1 Introduction 133
 6.1.1 The Discriminative Test (Difference Test) 134
 6.1.2 The Descriptive Test 135
 6.1.3 The Affective Test 135
6.2 Aim 136
6.3 Objectives 136
6.4 Sensory Evaluation of Fermented Probiotic Skim Milk 137
6.5 Material and Methods 139
 6.5.1 Enzyme Preparations 139
 6.5.2. Skim Milk Treatment and Fermentation 139
 6.5.3. Preparation of Test Samples 140
 6.5.4 Studying the Survival of Bifidobacterium Lactis Bb12 in the Mixture with Normal Yoghurt 144
 6.5.5 Statistical Analysis 144
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6 Results and Discussion</td>
<td>145</td>
</tr>
<tr>
<td>6.6.1 Sensory Evaluation of the Phase I</td>
<td>145</td>
</tr>
<tr>
<td>6.6.2 Sensory Evaluation in the Phase II</td>
<td>149</td>
</tr>
<tr>
<td>6.7 Conclusion</td>
<td>163</td>
</tr>
<tr>
<td>CHAPTER SEVEN</td>
<td></td>
</tr>
<tr>
<td>OVER ALL CONCLUSION AND FUTURE RESEARCH DIRECTIONS</td>
<td>164</td>
</tr>
<tr>
<td>7.1 Overall Conclusions</td>
<td>165</td>
</tr>
<tr>
<td>7.2 Future directions for this study</td>
<td>169</td>
</tr>
<tr>
<td>7.2.1 Evaluate prebiotics</td>
<td>169</td>
</tr>
<tr>
<td>7.2.2 Study the hydrolysis process effect</td>
<td>169</td>
</tr>
<tr>
<td>7.2.3 Synergistic study</td>
<td>169</td>
</tr>
<tr>
<td>7.2.4 Sensory evaluations</td>
<td>170</td>
</tr>
<tr>
<td>CHAPTER EIGHT</td>
<td></td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>171</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Time (h) to reach pH 4.2±0.03 as a result of Bifidobacterium lactis Bb12 growth in skim milk without prebiotic (Control), with FOS 1%, with FOS 3%, with FOS 5%, with Inulin 1%, with Inulin 3%, and with Inulin 5%. Samples were taken in Triplicates.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Total count of different Bifidobacterium lactis Bb12 and their control in the and with 1, 3 and 5% of FSM and ISM over 28 days refrigerated storage at 4ºC ± 1.</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Viability % of Bifidobacterium lactis Bb12 in 1, 3 and 5% concentration of FSM and ISM after 28 days refrigerated storage at 4ºC ± 1.</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Fermentation time (hours) of Bifidobacterium lactis Bb12 in skim milk without hydrolysis (Control), 10 min Hydrolysis skim milk and in 5 min hydrolysis skim milk to reach the pH 4.2±0.03.</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>the Viability % of B. lactis Bb12 in non-hydrolysed milk, 10 min HSM and 5 min HSM after 28 days refrigerated storage at 4ºC ± 1.</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Fermentation time of Bifidobacterium lactis Bb12 in skim milk without any addition (Control), with DH≤5% Hydrolysis by trypsin and FOS 5 % (A), with DH≤5% Hydrolysis by trypsin and inulin 3%(B), with FOS 5% and inulin 3%, with DH≤ 5% hydrolysis by trypsin(C), FOS 5% and inulin 3%(D) to reach pH 4.2±0.03.</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>The different effects of using different treatments of skim milk on the reduction of the fermentation time as compared with the control of each sample, the logarithmic reduction as cfu/ml and the viability % of Bifidobacterium lactis Bb12 and that in the comparison of using one treatment or synergy of more than one treatment. Where A is (DH≤5% skim milk + 5% FOS), B is (DH≤5% skim milk + 3% inulin), C is (DH≤5% skim milk + 5% FOS + 3% inulin) and D is (5% FOS +3% inulin).</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>the Viability % of Bifidobacterium lactis. Bb12 in skim milk without any addition (Control), with Hydrolysis for DH≤5 by trypsin and FOS 5%(A), with Hydrolysis DH≤5 by trypsin and inulin 3%(B), with FOS 5% and inulin 3%, with hydrolysis 10 min by trypsin(C), FOS 5% and inulin 3%(D) after 28 days refrigerated storage at 4ºC ± 1. Error bars were taken as standard deviation for three samples.</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>the fermentation time (h) and total count (log10 cfu/ml) at the end of fermentation by Bifidobacteria spp. and Lactobacillus casei strain shirota in MDSM product.</td>
</tr>
</tbody>
</table>
Table 5.5 Total counts of different probiotic bacteria and their control and in the MDSM product at the end of the fermentation time at pH 4.2±0.03 and after 28 day refrigerated storage at 4°C±1……………………………………122

Table 6.1 the different mixture % w/w of *Bifidobacterium lactis* Bb12 drink in MDSM product with low fat yogurt made using normal yogurt cultures……143
TABLE OF FIGURES

Figure 2.1 structure of polysaccharides: Fuctooligosaccharides: e.g. inulin, n=2-60; oligofructose, n=2-20... 29

Figure 2.2 Production of galactooligosaccharide from cows’ milk (adapted from Tungland (2003))...33

Figure 2.3 Inulin and oligofructose manufacturing process (adapted from Tungland (2003)).. 34

Figure 2.4: Increase in Bifidobacteria after intake of 15g/day of inulin (Adapted from Gibson et al., 1995)... 35

Figure 2.5 Brief summary of the metabolic pathways and products of hetero- and homofermentative bacteria and bifidobacteria (Adapted from Modler et al., 1990)... ...46

Figure 3.1 the pH change and development of Bifidobacterium lactis Bb12 growth to reach the end of fermentation at pH 4.2±0.03 in skim milk without prebiotic (Control) (♦), with Inulin 1% (▲), with Inulin 3% (●), and with Inulin 5% (■). Error bars were taken of three samples as standard deviation.. 58

Figure 3.2 the pH change and development of Bifidobacterium lactis Bb12 growth to reach the end of fermentation at pH 4.2±0.03 in skim milk without prebiotic (Control) (♦), with FOS 1% (■), with FOS 3% (▲), with FOS 5% (●). Error bars were taken of three samples as standard deviation............................. 59

Figure 3.3 the log_{10} of the viable count of Bifidobacterium lactis Bb12 in skim milk without prebiotics (control) (♦), with FOS 1% (■), with FOS 3% (▲), with FOS 5% (×), over 28 days refrigerated storage at 4ºC±1. Error bars indicate standard deviation for three samples...62

Figure 3.4 the log_{10} of the viable count of Bifidobacterium lactis Bb12 in skim milk without prebiotics (control) (♦), with Inulin 1% (■), with Inulin 3% (▲), and with Inulin 5% (x) over 28 days refrigerated storage at 4ºC±1. Error bars indicate standard deviation for three samples..63

Figure 3.5 the mean Logarithmic reduction of three samples of Bifidobacterium lactis Bb12 populations in skim milk without prebiotics (Control) and with FOS (1, 3, 5 %) or Inulin (1, 3, 5 %) after refrigerated for 28 days at 4ºC±1... 65

Figure 4.1 Curve for TNBS assays of 1:20 000 ratio of Trypsin to skim milk over 1 h hydrolysis at 37ºC, values taken as average of triplicate assays with error bars presented. Error bars indicate standard deviation of three samples... .. 77
Figure 4.2 standard curves for TNBS assay of 12% TCA (trichloroacetic acid) soluble nitrogen, as mM glycine, at 420 nm, values taken as average in triplicate assays with error bars presented. Error bars indicate standard deviation for three samples..78

Figure 4.3 The pH change and development of Bifidobacterium lactis Bb12 growth to reach the fermentation point at pH 4.2±0.03 in skim milk without hydrolysis (Control) (♦), and 10 min Hydrolysis skim milk (■) and in 5 min hydrolysis skim milk (▲). Error bars were taken as standard deviation for three samples..79

Figure 4.4 the log10 of the viable count of Bifidobacterium lactis Bb12 in skim milk without hydrolysis (control) (♦), 10min HSM (■) and 5min HSM (▲) over 28 days refrigerated storage at 4°C ± 1. Error bars were taken as standard deviation for three samples..83

Figure 4.5 the mean logarithmic reduction of three sample of Bifidobacterium Lactis Bb12 in skim milk without hydrolysis, with 5 minute hydrolysis and with 10 minute hydrolysis over refrigerated storage for 28 days......................85

Figure 5.1 the pH change during incubation of Bifidobacterium lactis Bb12 at 37°C to reach the fermentation point at pH 4.2±0.03 in skim milk without any addition (Control) (♦), with Hydrolysis for 10 min by trypsin and FOS 5%(A) (■), with Hydrolysis10 min by trypsin and Inulin 3% (B)(▲), with FOS 5% and Inulin 3% (D)(●), with hydrolysis 10 min by trypsin, FOS 5% and Inulin 3% (C) (×). Error bars indicate standard deviation for three samples..................101

Figure 5.2 the log10 of the viable count of Bifidobacterium lactis Bb12 in skim milk without hydrolysis (control) (♦), with hydrolysis for DH≤5 by trypsin and FOS 5% (A)(■), with hydrolysis DH≤5 by trypsin and inulin 3% (B)(▲), with inulin 3% and FOS 5% (D)(●), with hydrolysis DH≤5 by trypsin, FOS 5% and inulin 3% (C)(×) over 28 days refrigerated storage at 4°C±1. Error bars were taken as standard deviation for three samples.................................107

Figure 5.3 the mean logarithmic reduction for three samples of the Bifidobacterium Lactis Bb12 as log10 cfu/ml in the different mixtures of 5% FOS and 3% inulin in skim milk with or without hydrolysis for DH≤5 over refrigerated storage for 28 days..110

Figure 5.4 the pH change and development of *Bifidobacterium bifidum* NCIMB 702203 growth to reach the fermentation point at pH 4.2±0.03 in skim milk without any addition (Control) (■) and in MDSM product (▲). Error bars were taken as standard deviation for three samples.. 117

Figure 5.5 the pH change and development of *Bifidobacterium infantis* NCIMB 702205 growth to reach the fermentation point at pH 4.2±0.03 in skim milk without any addition (Control) (■) and in MDSM product (▲). Error bars were taken as standard deviation for three samples.................................118
Figure 5.6 the pH change and development of *Bifidobacterium breve* NCIMB 702257 growth to reach the fermentation point at pH 4.2±0.03 in skim milk without any addition (Control) (■) and in MDSM product (▲). Error bars were taken as standard deviation for three samples……………………………………………………………..119

Figure 5.7 the pH change and development of *L. casei* strain shirota growth to reach the fermentation point at pH 4.2±0.03 in skim milk without any addition (Control) (■) and in MDSM product (▲). Error bars were taken as standard deviation for three samples…………………………………………………………………….120

Figure 5.8 the log₁₀ of the viable count of *Bifidobacterium bifidum* NCIMB 702203 in skim milk without hydrolyse (Control) (■) and in MDSM product (▲). Over 28 days refrigerated storage at 4ºC. Error bars were taken as standard deviation for three samples……………………………………………………………..123

Figure 5.9 the log₁₀ of the viable count of *Bifidobacterium infantis* NCIMB 702205 in skim milk without hydrolysis (Control) (■) and in MDSM product (▲) over 28 days refrigerated storage at 4ºC. Error bars were taken as standard deviation for three samples……………………………………………………………..124

Figure 5.10 the log₁₀ of the viable count of *Bifidobacterium breve* NCIMB 702257 in skim milk without hydrolysis (Control) (■) and in MDSM product (▲) over 28 days refrigerated storage at 4ºC. Error bars were taken as standard deviation for three samples……………………………………………………………..125

Figure 5.11 the log₁₀ of the viable count of *L. casei* strain shirota in skim milk without hydrolysis (Control) (■) and in MDSM product (▲) over 28 days refrigerated storage at 4ºC. Error bars were taken as standard deviation for three samples……………………………………………………………..126

Figure 5.12 the mean logarithmic reduction for three samples of different probiotics as log₁₀ cfu/ml in the control and in the MDSM product over refrigerated storage at 4ºC±1 for 28 days……………………………………………………………..128

Figure 6.1 Questionnaire used for the ranking test in Phase I and II of the sensory evaluation study……..142

Figure 6.2 ranking sum of the appearance for three sample made of *Bifidobacterium lactis* Bb12 drink in MDSM product with; A (538), B (465) and C (880) after evaluation by 30 panelist……………………………………………………………………………………………………..145

Figure 6.3 ranking sum of taste for three sample made of *Bifidobacterium lactis* Bb12 drink in MDSM product with; A (538), B (465) and C (880) after evaluation by using 30 panelist……..146

Figure 6.4 ranking sum of mouth feel for three sample made of *Bifidobacterium lactis* Bb12 drink in MDSM product with; A (538), B (465) and C (880) after evaluation by using 30 panelist……..147
Figure 7.5 ranking sum of the overall preference for three sample made of *Bifidobacterium lactis* Bb12 drink in MDSM product with; A (538), B (465) and C (880) after evaluation by using 30 panelist.

Figure 6.6 the log10 cfu/ml of *Bifidobacterium lactis* Bb12 (■), *S. thermophilus* (♦) and *L. delbrueckii* ssp. bulgaricus (▲) in sample (1) 20:80 % v/v of *Bifidobacterium lactis* Bb12 drink in MSDM and yogurt made from normal culture over 28 days refrigerated storage at 4ºC ±1. Error bars were taken as standard deviation for three samples.

Figure 6.7 the log10 cfu/ml of *Bifidobacterium lactis* Bb12 (■), *S. thermophilus* (♦) and *L. delbrueckii* ssp. bulgaricus (▲) in sample (2) 40:60 % v/v of *Bifidobacterium lactis* Bb12 drink in MSDM and yogurt made from normal culture over 28 days refrigerated storage at 4ºC ±1. Error bars were taken as standard deviation for three samples.

Figure 6.8 the log10 cfu/ml of *Bifidobacterium lactis* Bb12 (■), *S. thermophilus* (♦) and *L. delbrueckii* ssp. bulgaricus (▲) in sample (3) 50:50 % v/v of *Bifidobacterium lactis* Bb12 drink in MSDM and yogurt made from normal culture over 28 days refrigerated storage at 4ºC ±1. Error bars were taken as standard deviation for three samples.

Figure 6.9 the log10 cfu/ml of *Bifidobacterium lactis* Bb12 (■), *S. thermophilus* (♦) and *L. delbrueckii* ssp. bulgaricus (▲) in sample (4) 60:40 % v/v of *Bifidobacterium lactis* Bb12 drink in MSDM and yogurt made from normal culture over 28 days refrigerated storage at 4ºC ±1. Error bars were taken as standard deviation for three samples.

Figure 6.10 the log10 cfu/ml of *Bifidobacterium lactis* Bb12 (■), *S. thermophilus* (♦) and *L. delbrueckii* ssp. bulgaricus (▲) in sample (5) 80:20 % v/v of *Bifidobacterium lactis* Bb12 drink in MDSM and yogurt made from normal culture over 28 days refrigerated storage at 4ºC ±1. Error bars were taken as standard deviation for three samples.

Figure 6.11 the mean logarithmic reduction for three samples of *Bifidobacterium lactis* Bb12, *L. delbrueckii* subsp. bulgaricus and *S. thermophilus* in the different mixtures made of *Bifidobacterium lactis* Bb12 drink and yogurt made with normal culture over 28 days of refrigerated storage at 4ºC ±1.

Figure 6.12 ranking sum of the appearance for three different samples D (540) with *Bifidobacterium lactis* Bb12 drink with 5% sugar and 3% strawberry flavour; E (388) with 40:60 *Bifidobacterium lactis* Bb12 drink, low fat yogurt with 5% sugar and 3% strawberry flavour; and F (684) with commercial probiotic containing Bifidobacteria and strawberry flavour, after evaluation by 20 panelists.

Figure 6.13 ranking sum of the taste for three different samples D (540) with *Bifidobacterium lactis* Bb12 drink with 5% sugar and 3% strawberry flavour; E (388) with 40:60 *Bifidobacterium lactis* Bb12 drink, low fat yogurt with 5%
sugar and 3% strawberry flavour; and F (684) with commercial probiotic product containing Bifidobacteria and strawberry flavour, after evaluation by 20 panelists……………………………………………………………………………….158

Figure 6.14 ranking sum of the mouth feel for three different samples D (540) with *Bifidobacterium lactis* Bb12 drink with 5% sugar and 3% strawberry flavour; E (388) with 40:60 *Bifidobacterium lactis* Bb12 drink, low fat yogurt with 5% sugar and 3% strawberry flavour; and F (684) with commercial probiotic containing Bifidobacteria and strawberry flavour, after evaluation by 20 panelists…………………………………………………………………………………………………….160

Figure 6.15 ranking sum of the overall preference for three different samples D (540) with *Bifidobacterium lactis* Bb12 drink with 5% sugar and 3% strawberry flavour; E (388) with 40:60 *Bifidobacterium lactis* Bb12 drink, low fat yogurt with 5% sugar and 3% strawberry flavour; and F (684) with commercial probiotic containing Bifidobacteria and strawberry flavour, after evaluation by 20 panelists…….161
ABBREVIATIONS

AB yoghurts containing L. acidophilus and Bifidobacterium spp.

ABC yoghurts with L. acidophilus, Bifidobacterium spp., and L. casei

ANZFA Australian and New Zealand Food Standards.

ATCC the American Type Culture Collection.

B. infantis Bifidobacterium infantis

B. lactis Bb12 Bifidobacterium animalis subspecies Lactis Bb12 (From Chr. Hansen)

CCUG Culture Collection of University of Göteborg. Sweden.

CFU Colony Format Unite

CPPs Caseinophosphopeptide-rich fraction

DP Degree of polymerization

DSMZ German Collection of Microorganisms and Cell Cultures.

F6PPK Fructose-6-Phosphate Phosphoketolase

FAO/WHO Food and Agriculture Organization /World Health Organization

FOS Fructooligosaccharides

FOSHU Food for Specified Health Use.

FSM Fructooligosaccharides in Skim Milk.

g gram(s)

GIT Gastrointestinal Tract

GOS Galcto-oligosaccharides

GRAS General Recognized As Safe

h hour (s)

H2O2 hydrogen peroxide

ISM Inulin in Skim Milk.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO</td>
<td>International Organization of Standardization</td>
</tr>
<tr>
<td>L</td>
<td>liter (s)</td>
</tr>
<tr>
<td>L. acidophilus</td>
<td>Lactobacillus acidophilus</td>
</tr>
<tr>
<td>L. bulgaricus</td>
<td>Lactobacillus delbrueckii subspecies bulgaricus</td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic Acid Bacteria</td>
</tr>
<tr>
<td>LDL-C</td>
<td>Low-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>LMG</td>
<td>Laboratory of Microbiology Gent Bacteria Collection.</td>
</tr>
<tr>
<td>MDSM product</td>
<td>Mix Design Skim Milk (hydrolysed Skim milk for 10 minute by using trypsin supplied with 5%FOS and 3% inulin)</td>
</tr>
<tr>
<td>MRS</td>
<td>deMan Rogosa Sharpe medium</td>
</tr>
<tr>
<td>NNLP</td>
<td>Neomycin sulphate, nalidixic acid, lithium chloride and Paromomycin</td>
</tr>
<tr>
<td>NYA</td>
<td>National Yogurt Association of the United States.</td>
</tr>
<tr>
<td>S. thermophilus</td>
<td>Streptococcus salivarius subspecies thermophilus</td>
</tr>
<tr>
<td>Spp</td>
<td>subspecies</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
</tr>
</tbody>
</table>

XVII