Show simple item record

dc.contributor.authorLiu, Pengcheng
dc.contributor.authorYu, Hongnian
dc.contributor.authorCang, Shuang
dc.date.accessioned2019-01-24T10:20:29Z
dc.date.available2019-01-24T10:20:29Z
dc.date.issued2018-07-25
dc.identifier.citationLiu, P., Yu, H. and Cang, S. (2018) 'Trajectory synthesis and optimization of an underactuated microrobotic system with dynamic constraints and couplings', International Journal of Control, Automation and Systems, 16(5), pp.2373-2383. https://doi.org/10.1007/s12555-017-0192-7en_US
dc.identifier.issn1598-6446
dc.identifier.issn2005-4092 (online)
dc.identifier.urihttp://hdl.handle.net/10369/10227
dc.descriptionArticle published in International Journal of Control, Automation and Systems, available at https://doi.org/10.1007/s12555-017-0192-7en_US
dc.description.abstractMotivated by the desire to optimally control the friction-induced stick-slip locomotion and sufficiently improve the energy efficacy, a novel trajectory synthesis and optimization scheme is proposed in this paper for a underactuated microrobotic system with dynamic constraints and couplings. The nonlinear microrobotic model utilizes combined tangential-wise and normal-wise vibrations for underactuated locomotion, which features a generic significance for the studies on microrobotic systems. Specifically, an analytical two-stage velocity trajectory is constructed under control indexes and physical constraints. Subsequently, the dynamic coupling behavior and the qualitative variation laws are characterized through rigorous bifurcation analysis. The synthesized trajectory is optimized and tuned via rigorous analysis based on the robot dynamics. The proposed trajectory planning mechanism provides a promising approach in determining the optimal viscoelastic parameters and trajectory parameters such that the optimal locomotion indexes can be met. Simulation results are presented to demonstrate the efficacy and feasibility of the proposed scheme.en_US
dc.description.sponsorshipThis work was partially supported by European Commission Marie Skłodowska-Curie SMOOTH (Smart robots for fire-fighting) project (H2020-MSCA-RISE-2016-734875) - https://doi.org/fusion-edu.eu/SMOOTH/, Royal Society International Exchanges Scheme (Adaptive Learning Control of a Cardiovascular Robot using Expert Surgeon Techniques) project (IE151224), and European Commission International Research Staff Exchange Scheme (IRSES) RABOT project (PIRSES-GA-2012-318902) - https://doi.org/rabot.fusion-edu.eu/.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesInternational Journal of Control, Automation and Systems;
dc.subjectOptimizationen_US
dc.subjecttrajectory synthesisen_US
dc.subjectunderactuated systemen_US
dc.subjectvibro-driven microroboten_US
dc.subjectviscoelasticityen_US
dc.titleTrajectory Synthesis and Optimization of an Underactuated Microrobotic System with Dynamic Constraints and Couplingsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1007/s12555-017-0192-7
dcterms.dateAccepted2018-02-22
rioxxterms.versionAMen_US
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_US
rioxxterms.licenseref.startdate2019-07-25
rioxxterms.freetoread.startdate2019-07-25


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record