• English
    • Welsh
  • English 
    • English
    • Welsh
  • Login
Search DSpace:
  • Home
  • Research at Cardiff Met
  • Library Services
  • Contact Us
View item 
  • DSpace home
  • Cardiff School of Sport and Health Sciences
  • Health and Risk Management
  • View item
  • DSpace home
  • Cardiff School of Sport and Health Sciences
  • Health and Risk Management
  • View item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: a prediction model development and validation study

Thumbnail
View/open
Publisher's PDF (1.588Mb)
Author
Cai, Y.
Yu, J.G.
Chen, Y.
Liu, C.
Xiao, L.
Grais, E.M.
Zhao, Fei
Lan, L.
Zeng, S.
Zeng, J.
Wu, M.
Date
2021-01-21
Acceptance date
2020-12-28
Type
Article
Publisher
BMJ
ISSN
2044-6055
Metadata
Show full item record
Abstract
Objectives This study investigated the usefulness and performance of a two-stage attention-aware convolutional neural network (CNN) for the automated diagnosis of otitis media from tympanic membrane (TM) images. Design A classification model development and validation study in ears with otitis media based on otoscopic TM images. Two commonly used CNNs were trained and evaluated on the dataset. On the basis of a Class Activation Map (CAM), a two-stage classification pipeline was developed to improve accuracy and reliability, and simulate an expert reading the TM images. Setting and participants This is a retrospective study using otoendoscopic images obtained from the Department of Otorhinolaryngology in China. A dataset was generated with 6066 otoscopic images from 2022 participants comprising four kinds of TM images, that is, normal eardrum, otitis media with effusion (OME) and two stages of chronic suppurative otitis media (CSOM). Results The proposed method achieved an overall accuracy of 93.4% using ResNet50 as the backbone network in a threefold cross-validation. The F1 Score of classification for normal images was 94.3%, and 96.8% for OME. There was a small difference between the active and inactive status of CSOM, achieving 91.7% and 82.4% F1 scores, respectively. The results demonstrate a classification performance equivalent to the diagnosis level of an associate professor in otolaryngology. Conclusions CNNs provide a useful and effective tool for the automated classification of TM images. In addition, having a weakly supervised method such as CAM can help the network focus on discriminative parts of the image and improve performance with a relatively small database. This two-stage method is beneficial to improve the accuracy of diagnosis of otitis media for junior otolaryngologists and physicians in other disciplines.
Journal/conference proceeding
BMJ Open;
Citation
Cai, Y., Yu, J.G., Chen, Y., Liu, C., Xiao, L., Grais, E.M., Zhao, F., Lan, L., Zeng, S., Zeng, J. and Wu, M. (2021) 'Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: a prediction model development and validation study', BMJ open, 11(1), p.e041139.
URI
http://hdl.handle.net/10369/11273
DOI
http://dx.doi.org/10.1136/bmjopen-2020-041139
Description
Article published in BMJ Open Ear, nose and throat/otolaryngology available open access at http://dx.doi.org/10.1136/bmjopen-2020-041139
Rights
http://creativecommons.org/licenses/by-nc/4.0/
Sponsorship
This work was supported by the Key R&D Programme of Guangdong Province, China (Grant No. 2018B030339001), medical artificial intelligence project of Sun Yat-Sen Memorial Hospital (YXYGZN201904) and the National Natural Science Foundation of China (Grant No. 81570935)
Collections
  • Health and Risk Management [392]

Related items

Showing items related by title, author, subject and abstract.

  • Thumbnail

    An investigation into the effects that the social media platforms Facebook and Pinterest have on the planning stage of weddings 

    Cradduck, Paige (Cardiff Metropolitan University, 2018-04)
    This dissertation attempts to identify to what extent social media is impacting how people plan their weddings. Social media has become more and more popular over the years, therefore this study researches how the growth ...
  • Thumbnail

    A content analysis of the nutrition information in articles and adverts in women’s magazines. 

    Bohadana, Ruti Thalia (Cardiff Metropolitan University, 2017-06-01)
    Background: Obesity is at epidemic level in the UK with 25% of adults estimated to be obese in 2013 (HSE, 2014). Many people look to the media for health and nutrition information (Hill, 2006). It has been found that the ...
  • Thumbnail

    Landing Kinematics in Elite Male Youth Soccer Players of Different Chronologic Ages and Stages of Maturation 

    Read, Paul; Oliver, Jon; De Ste Croix, Mark; Myer, Gregory; Lloyd, Rhodri S. (National Athletic Trainers' Association, 2018-04)
    Context: Despite the high frequency of knee injuries, there is a paucity of research to show the effects of chronological age and stage of maturation on knee joint kinematics in male youth soccer players. Objective: ...

Browse

DSpace at Cardiff MetCommunities & CollectionsBy issue dateAuthorsTitlesSubjectsThis collectionBy issue dateAuthorsTitlesSubjects

My Account

Login

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

DSpace software copyright © 2002-2015  DuraSpace
Contact us | Send feedback | Administrator