Show simple item record

dc.contributor.authorGrais, Emad M.
dc.contributor.authorWang, Xiaoya
dc.contributor.authorWang, Jie
dc.contributor.authorZhao, Fei
dc.contributor.authorJiang, Wen
dc.contributor.authorCai, Yuexin
dc.contributor.authorZhang, Lifang
dc.contributor.authorLin, Qinweng
dc.contributor.authorYang, Haidi
dc.date.accessioned2021-07-01T11:23:41Z
dc.date.available2021-07-01T11:23:41Z
dc.date.issued2021-05-20
dc.identifier.citationGrais, E.M., Wang, X., Wang, J., Zhao, F., Jiang, W., Cai, Y., Zhang, L., Lin, Q. and Yang, H. (2021) 'Analysing wideband absorbance immittance in normal and ears with otitis media with effusion using machine learning', Scientific Reports, 11(1), pp.1-12. https://doi.org/10.1038/s41598-021-89588-4en_US
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10369/11439
dc.descriptionArticle published in Scientific Reports available open access at https://doi.org/10.1038/s41598-021-89588-4en_US
dc.description.abstractWideband Absorbance Immittance (WAI) has been available for more than a decade, however its clinical use still faces the challenges of limited understanding and poor interpretation of WAI results. This study aimed to develop Machine Learning (ML) tools to identify the WAI absorbance characteristics across different frequency-pressure regions in the normal middle ear and ears with otitis media with effusion (OME) to enable diagnosis of middle ear conditions automatically. Data analysis included pre-processing of the WAI data, statistical analysis and classification model development, and key regions extraction from the 2D frequency-pressure WAI images. The experimental results show that ML tools appear to hold great potential for the automated diagnosis of middle ear diseases from WAI data. The identified key regions in the WAI provide guidance to practitioners to better understand and interpret WAI data and offer the prospect of quick and accurate diagnostic decisions.en_US
dc.language.isoenen_US
dc.publisherNatureen_US
dc.relation.ispartofseriesScientific Reports;
dc.titleAnalysing wideband absorbance immittance in normal and ears with otitis media with effusion using machine learningen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1038/s41598-021-89588-4
dcterms.dateAccepted2021-04-14
rioxxterms.funderCardiff Metropolitan Universityen_US
rioxxterms.identifier.projectCardiff Metropolian (Internal)en_US
rioxxterms.versionVoRen_US
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en_US
rioxxterms.funder.project37baf166-7129-4cd4-b6a1-507454d1372een_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following collection(s)

Show simple item record