• English
    • Welsh
  • English 
    • English
    • Welsh
  • Login
Search DSpace:
  • Home
  • Research at Cardiff Met
  • Library Services
  • Contact Us
View item 
  • DSpace home
  • Cardiff School of Sport and Health Sciences
  • Taught Degrees (Sport and Health Sciences)
  • Undergraduate Degrees (Sport)
  • View item
  • DSpace home
  • Cardiff School of Sport and Health Sciences
  • Taught Degrees (Sport and Health Sciences)
  • Undergraduate Degrees (Sport)
  • View item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Effect of Ischaemic Preconditioning on Right Ventricular Function During Exercise in Hypoxia

Thumbnail
View/open
Emma Bevan.pdf (2.838Mb)
Author
Bevan, Emma
Date
2015
Type
Dissertation
Publisher
Cardiff Metropolitan University
Metadata
Show full item record
Abstract
Exercise in hypoxia causes severe arterial hypoxemia. The acute cardiovascular responses include increases in heart rate (HR), cardiac output, and sympathetic nervous system activation. In the pulmonary system, hypoxia induces a rise in pulmonary arterial systolic pressure (PASP), but right ventricular (RV) systolic function is maintained. The rise in PASP improves the matching of perfusion to ventilation, but it creates a greater afterload for the RV. For this reason it may be partly responsible for the performance decrements reported at altitude. Whilst it is known that ischaemic preconditioning (IPC) can attenuate the hypoxic rise in PASP, it is not known whether it will reduce PASP during exercise in hypoxia or improve RV function. The aim of this present study was to assess RV function during exercise in hypoxia, and to ascertain whether IPC has the potential to reduce PASP or improve RV function. 3 healthy males (mean ± SD; aged 23 ± 4.93 years, height 173 ± 0.35 cm and body mass 66.6 ± 10.46 Kg) visited the laboratory on three separate occasions, and echocardiographic measurements were taken at rest and exercise in the following conditions: baseline normoxia, hypoxia, normoxia following IPC and hypoxia following IPC. RV areas, PASP and tricuspid annular plane systolic excursion were measured using echocardiography, whilst heart rate, blood pressure and arterial oxygen saturation (SpO2) were monitored and recorded throughout. Hypoxic exercise resulted in rises in PASP and decreases in SpO2, but it was inconclusive whether RV systolic function was maintained. IPC did not attenuate the hypoxic rise in PASP for all participants at rest or during exercise; neither did it improve RV systolic function nor oxygen delivery in hypoxia. It was concluded that the modest effect of IPC was not sufficient to improve RV function during exercise in hypoxia.
URI
http://hdl.handle.net/10369/6838
Collections
  • Undergraduate Degrees (Sport) [1422]

Related items

Showing items related by title, author, subject and abstract.

  • Thumbnail

    Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude 

    Stembridge, Mike; Ainslie, Philip; Hughes, Michael G.; Stöhr, Eric J.; Cotter, James D.; Tymko, Michael M.; Day, Trevor A.; Bakker, Akke; Shave, Rob (American Physiological Society, 2015-11-15)
    Impaired myocardial systolic contraction and diastolic relaxation have been suggested as possible mechanisms contributing to the decreased stroke volume (SV) observed at high altitude (HA). To determine whether intrinsic ...
  • Thumbnail

    Adaptation of myocardial twist in the remodelled athlete's heart is not related to cardiac output 

    Cooke, Samuel; Samuel, T. Jake; Cooper, Stephen-Mark; Stöhr, Eric J. (Wiley, 2018-09-11)
    Despite increased stroke volume (SV), the‘athlete's heart’ has been proposed to have a similar left ventricular (LV) muscle function ‐ as represented by LV twist – compared with the untrained state. However, the underpinning ...
  • Thumbnail

    Systolic and Diastolic LV Mechanics during and following Resistance Exercise 

    Stöhr, Eric J.; Stembridge, Mike; Shave, Rob; Samuel, Jake; Stone, Keeron J.; Esformes, Joseph I. (Lippincott, Williams & Wilkins, 2017-05-16)
    PURPOSE: To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist and untwisting rate ('LV mechanics'). METHODS: LV ...

Browse

DSpace at Cardiff MetCommunities & CollectionsBy issue dateAuthorsTitlesSubjectsThis collectionBy issue dateAuthorsTitlesSubjects

My Account

Login

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

DSpace software copyright © 2002-2015  DuraSpace
Contact us | Send feedback | Administrator