Show simple item record

dc.contributor.authorPeel, Sean
dc.contributor.authorEggbeer, Dominic
dc.date.accessioned2015-10-21T10:31:42Z
dc.date.available2015-10-21T10:31:42Z
dc.date.issued2016
dc.identifier.citationPeel, S. and Eggbeer, D. (2016) 'Additively manufactured maxillofacial implants and guides – achieving routine use', Rapid Prototyping Journal, 22 (1), pp.189-199.
dc.identifier.urihttp://hdl.handle.net/10369/7255
dc.description.abstractPurpose: The technical efficacy of, and clinical benefits from using Computer Aided Design (CAD) and Additive Manufacturing (AM) in the production of patient-specific devices (implants and guides) has been established. Despite this, they are still not in routine clinical use. With AM equipment and CAD tool costs largely outside of the clinician’s or designer’s control, the opportunity exists to explore design process improvement routes to facilitate routine health service implementation. This paper identifies the key design process factors acting as drivers or barriers to this aim. Methodology / approach: A literature review, new data from three separate clinical case studies, and experience from an institute working on collaborative research and commercial application of CAD/AM in the maxillofacial specialty were analysed to extract a list and formulate models of design process factors. Findings: A semi-digital design and fabrication process is currently the lowest cost and shortest duration for cranioplasty implant production. The key design process factor to address is the fidelity of the device design specification. Implications / limitations: Further research into the relative value of, and best methods to address the key factor is required; in order to work towards the development of new design tools. A wider range of benchmarked case studies is required to better generalise findings beyond one implant type. Originality / value: Design process factors are identified (building on previous work largely restricted to technical and clinical efficacy). Additionally, three implant design and fabrication workflows are directly compared for costs and time. Unusually, a design process failure is detailed. A new model is proposed – describing design process factor relationships and the desired impact of future design tools.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesRapid Prototyping Journal;Volume 22; Issue 1
dc.subjectAdditive Manufacturingen_US
dc.subjectComputer Aided Designen_US
dc.subjectDesign Processen_US
dc.subjectImplantsen_US
dc.subjectSurgical Guidesen_US
dc.subjectCranioplastyen_US
dc.subjectWorkflowen_US
dc.titleAdditively Manufactured Maxillofacial Implants & Guides - Achieving Routine Useen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1108/RPJ-01-2014-0004
dc.date.dateAccepted2014-11-28
dc.refexceptionOA compliant


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record