• English
    • Welsh
  • English 
    • English
    • Welsh
  • Login
Search DSpace:
  • Home
  • Research at Cardiff Met
  • Library Services
  • Contact Us
View item 
  • DSpace home
  • Cardiff School of Sport and Health Sciences
  • Sport Research Groups
  • View item
  • DSpace home
  • Cardiff School of Sport and Health Sciences
  • Sport Research Groups
  • View item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduced left ventricular filling following blood volume extraction does not result in compensatory augmentation of cardiac mechanics

Thumbnail
View/open
Author's post-print (562.0Kb)
Author
Lord, Rachel
Macleod, David
George, Keith
Oxborough, David
Shave, Rob
Stembridge, Mike
Date
2018-01-18
Acceptance date
2018-01-15
Date Deposited
2018-02-15
Type
Article
acceptedVersion
Publisher
Wiley
ISSN
0958-0670
1469-445X (ESSN)
Metadata
Show full item record
Abstract
An acute non-invasive reduction in preload has been shown to augment cardiac mechanics to maintain stroke volume and cardiac output. Such interventions induce concomitant changes in heart rate, whereas blood volume extraction reduces preload without changes in heart rate. Therefore, the purpose of this study was to determine whether a preload reduction in isolation resulted in augmented stroke volume achieved via enhanced cardiac mechanics. Nine healthy volunteers (four female, age 29 ± 11 years) underwent echocardiography for the assessment of left ventricular (LV) volumes and mechanics in a supine position at baseline and end extraction after the controlled removal of 25% of total blood volume (1062 ± 342 ml). Arterial blood pressure was monitored continuously by a pressure transducer attached to an indwelling radial artery catheter. Heart rate and total peripheral resistance were unchanged from baseline to end extraction, but systolic blood pressure was reduced (from 148 to 127 mmHg). From baseline to end extraction there were significant reductions in left ventricular end-diastolic volume (from 89 to 71 ml) and stroke volume (from 56 to 37 ml); however, there was no change in LV twist, basal or apical rotation. In contrast, LV longitudinal strain (from −20 to −17%) and basal circumferential strain (from −22 to −19%) were significantly reduced from baseline to end extraction. In conclusion, a reduction in preload during blood volume extraction does not result in compensatory changes in stroke volume or cardiac mechanics. Our data suggest that LV strain is dependent on LV filling and consequent geometry, whereas LV twist could be mediated by heart rate.
Journal/conference proceeding
Experimental Physiology;
Citation
Lord, R., MacLeod, D., George, K., Oxborough, D., Shave, R. and Stembridge, M. (2018) 'Reduced left ventricular filling following blood volume extraction does not result in compensatory augmentation of cardiac mechanics', Experimental physiology. doi :10.1113/EP086761
URI
http://hdl.handle.net/10369/9278
DOI
http://dx.doi.org/10.1113/EP086761
Description
This article was published in Experimental Physiology on 18 January 2018 online, available at http://dx.doi.org/10.1113/EP086761
Rights
http://www.rioxx.net/licenses/all-rights-reserved
Sponsorship
Cardiff Metropolitan University (Grant ID: Cardiff Metropolian (Internal))
Collections
  • Sport Research Groups [1127]

Related items

Showing items related by title, author, subject and abstract.

  • Thumbnail

    Ventricular structure, function and mechanics at high altitude: chronic remodelling in Sherpa verses short-term lowlander adaptation. 

    Unknown author (American Physiological Society, 2014-08-01)
    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged ...
  • Thumbnail

    Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation. 

    Unknown author (American Physiological Society, 2014-08-01)
    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged ...
  • Thumbnail

    In vivo human cardiac shortening and lengthening velocity is region-dependent and not coupled with heart rate 

    Stembridge, Mike; Ainslie, Philip; Hughes, Michael G.; Stöhr, Eric J.; Cotter, James D.; Nio, Amanda Q. X.; Shave, Rob (American Physiological Society, 2015-05-01)
    Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged ...

Browse

DSpace at Cardiff MetCommunities & CollectionsBy issue dateAuthorsTitlesSubjectsThis collectionBy issue dateAuthorsTitlesSubjects

My Account

Login

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

DSpace software copyright © 2002-2015  DuraSpace
Contact us | Send feedback | Administrator